Return to search

Estimation of body mass index from the metrics of the first metatarsal

Estimation of the biological profile from as many skeletal elements as possible is a necessity in both forensic and bioarchaeological contexts; this includes non-standard aspects of the biological profile, such as body mass index (BMI). BMI is a measure that allows for understanding of the composition of an individual and is traditionally divided into four groups: underweight, normal weight, overweight, and obese. BMI estimation incorporates both estimation of stature and body mass. The estimation of stature from skeletal elements is commonly included into the standard biological profile but the estimation of body mass needs to be further statistically validated to be consistently included. The bones of the foot, specifically the first metatarsal, may have the ability to estimate BMI given an allometric relationship to stature and the mechanical relationship to body mass.
There are two commonly used methods for stature estimation, the anatomical method and the regression method. The anatomical method takes into account all of the skeletal elements that contribute to stature while the regression method relies on the allometric relationship between a skeletal element and living stature. A correlation between the metrics of the first metatarsal and living stature has been observed, and proposed as a method for valid stature estimation from the boney foot (Byers et al., 1989).
Body mass estimation from skeletal elements relies on two theoretical frameworks: the morphometric and the mechanical approaches. The morphometric approach relies on the size relationship of the individual to body mass; the basic relationship between volume, density, and weight allows for body mass estimation. The body is thought of as a cylinder, and in order to understand the volume of this cylinder the diameter is needed. A commonly used proxy for this in the human body is skeletal bi-iliac breadth from rearticulated pelvic girdle.
The mechanical method of body mass estimation relies on the ideas of biomechanical bone remodeling; the elements of the skeleton that are under higher forces, including weight, will remodel to minimize stress. A commonly used metric for the mechanical method of body mass estimation is the diameter of the head of the femur. The foot experiences nearly the entire weight force of the individual at any point in the gait cycle and is subject to the biomechanical remodeling that this force would induce. Therefore, the application of the mechanical framework for body mass estimation could stand true for the elements of the foot. The morphometric and mechanical approaches have been validated against one another on a large, geographically disparate population (Auerbach and Ruff, 2004), but have yet to be validated on a sample of known body mass.
DeGroote and Humphrey (2011) test the ability of the first metatarsal to estimate femoral head diameter, body mass, and femoral length. The estimated femoral head diameter from the first metatarsal is used to estimate body mass via the morphometric approach and the femoral length is used to estimate living stature. The authors find that body mass and stature estimation methods from more commonly used skeletal elements compared well with the methods developed from the first metatarsal.
This study examines 388 `White' individuals from the William M. Bass donated skeletal collection to test the reliability of the body mass estimates from femoral head diameter and bi-iliac breadth, stature from maximum femoral length, and body mass and stature from the metrics of the first metatarsal. This sample included individuals from all four of the BMI classes. This study finds that all of the skeletal indicators compare well with one another; there is no statistical difference in the stature estimates from the first metatarsal and the maximum length of the femur, and there is no statistical between all three of the body mass estimation methods. When compared to the forensic estimates of stature neither of the tested methods had statistical difference. Conversely, when the body mass estimates are compared to forensic body mass there was a statistical difference and when further investigated the most difference in the body mass estimates was in the extremes of body mass (the underweight and obese categories).
These findings indicate that the estimation of stature from both the maximum femoral length and the metrics of the metatarsal are accurate methods. Furthermore, the estimation of body mass is accurate when the individual is in the middle range of the BMI spectrum while these methods for outlying individuals are inaccurate. These findings have implications for the application of stature and body mass estimation in the fields of bioarchaeology, forensic anthropology, and paleoanthropology.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/15301
Date12 March 2016
CreatorsDunn, Tyler Edward
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0023 seconds