Return to search

Quantitative approaches to probe the acetylproteome

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biological Engineering, 2013. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 173-175). / Lysine acetylation is a prevalent post-translational modification whose multi-varied biological roles have recently emerged. While having all the necessary components of a signaling network, lysine acetylation studies have been limited to a small subset of proteins and pathways. Using a quantitative unbiased mass spectrometry approach, we explored the role of growth factor stimulation on lysine acetylation. Although the growth factors bind receptor tyrosine kinases, growth factor stimulation resulted in rapid and dynamic changes in lysine acetylation. Furthermore, we demonstrated that short-term HDAC inhibition alters phosphotyrosine-signaling networks. To better understand this behavior, a suite of biochemical and computational methods were developed. Bromodomains were engineered to explore binding preferences using degenerate peptide arrays as well as develop acetyllysine affinity reagents as an alternative to anti-acetyllysine antibodies. Additionally, bioorthogonal proteomics were employed to identify acetyltransferase substrates. Taken together, the knowledge generated and the methods developed provide a toolkit for the analysis of lysine acetylation networks in the context of many biological processes as well as diseases. / by Bryan David Bryson. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/81664
Date January 2013
CreatorsBryson, Bryan David
ContributorsForest M. White., Massachusetts Institute of Technology. Department of Biological Engineering., Massachusetts Institute of Technology. Department of Biological Engineering.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format175 p., application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.002 seconds