Return to search

Modelos de predição utilizando lógica fuzzy : uma abordagem inspirada na inferência bayesiana / Prediction models using fuzzy logic : an approach inspired in the bayesian inference

Orientador: Laécio Carvalho de Barros / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T13:51:43Z (GMT). No. of bitstreams: 1
Bacani_Felipo_M.pdf: 2024723 bytes, checksum: badf6f6540880c17a7c2ffbf9d211db0 (MD5)
Previous issue date: 2012 / Resumo: O presente trabalho tem por objetivo aplicar a teoria de conjuntos fuzzy a modelos de predição (inferência) de dados. O modelo utilizado baseia-se fortemente nas relações fuzzy em espaços contínuos (caso não matricial) e na regra de inferência modus ponens, utilizando t-normas (que neste contexto são similares à operação de cópula em estatística). é do modus ponens que surge o caráter \condicional" de alguns dos termos envolvidos, e a partir daí é que a analogia com a inferência bayesiana é feita. Entretanto, são apenas analogias conceituais: o presente trabalho não lida com nenhuma distribuição de probabilidades. Na verdade, conjuntos fuzzy são tratados como distribuições de possibilidades. A metodologia proposta é utilizada com o objetivo de tornar mais precisa a previsão de um especialista, levando em conta um registro histórico sobre o problema. Ou seja, melhorar a previsão do especialista levando em conta o que ocorreu com as previsões anteriores. Para testar a metodologia, utilizou-se dados meteorológicos de temperatura e umidade provenientes de lavouras de café. Os dados foram gentilmente cedidos pelo CEPAGRI/Unicamp. Os testes foram avaliados através de dois indicadores estatísticos, 'D' de Willmott e MAPE (Mean Absolute Percentage Error), mostrarando que a metodologia foi capaz de melhorar a previsão do especialista na maioria das situações estudadas / Abstract: This work aims to apply Fuzzy set theory in forecasting models. The modeling methodology is largely based on continuous fuzzy relations and in the modus ponens, using t-norms (that in this context are similar to the copula operations in statistics). It is from the modus ponens that arises the \conditional" interpretation of some of the terms involved, and it is from there that an analogy with the Bayesian inference is made. However, it is only a conceptual analogy: this work do not involve probability distributions. Actually, fuzzy sets are treated as possibility distributions. The methodology is used to improve the accuracy of expert forecasting considering a historic data. Namely, to improve expert prediction based on past performance. To evaluate the test the methodology, temperature and humidity data from coffee crop was used. The data was gently provided by CEPAGRI/Unicamp. Results were validated using two different statistic indicators, MAPE (mean absolute percentage error) and Willmott 'D', showing that the methodology was able to improve the expert prediction in most cases / Mestrado / Matematica Aplicada / Mestre em Matemática Aplicada

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/307562
Date20 August 2018
CreatorsBacani, Felipo, 1985-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Barros, Laécio Carvalho de, 1954-, Zullo Junior, Jurandir, Gomide, Fernando Antonio Campos
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática Aplicada
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format137 p. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds