Return to search

Development and characterization of a novel microfluidic bioreactor system utilized for examining hemodynamic effects on cellular response

Understanding the contribution of individual mechanical stimuli to cardiovascular pathogenesis is critically important for understanding and treating cardiovascular disease, and microfluidic bioreactors are a useful tool for these studies. Cardiovascular bioreactors are uniquely complex because they require the simultaneous application of fluid shear stress and dynamic strain. One of the key shortcomings of current mechanotransduction bioreactors that we wanted to address in this thesis was the effect of dynamic strain on the fluid shear conditions in a bioreactor system. In this thesis, we designed, developed and validated a microfluidic bioreactor system which can accurately recapitulate the major hemodynamic mechanical parameters of shear stress and strain. We characterized the system using computational modeling and validated computational models by developing novel three dimensional particle velocimetry (PIV) techniques. Computational modeling of the microfluidic bioreactor during dynamic strain demonstrated that shear stress experience by cells in a bioreactor is altered by applying dynamic strain. The PIV methods developed allowed us to visualize the three dimensional fluid velocity profile in the bioreactor during dynamic strain and allowed us to measure and validate the computational models of bioreactor dynamics. In addition, we applied this system to investigate the effects of mechanical stimuli on omental mesothelium.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-07052013-154524
Date17 July 2013
CreatorsHofmeister, Lucas Hudson
ContributorsKevin Seale, Hak- Joon Sung
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-07052013-154524/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0094 seconds