Magnetresonanztomographie (MRT) ist eine nichtinvasive Bildgebungsmethode, die in der Medizin sowie in der Forschung eingesetzt wird und auf der magnetischen Kernresonanz beruht. Die Erforschung der Ultrahochfeld (UHF) MRT ab Magnetfeldstärken von 7.0 Tesla und darüber ist durch einen intrinsischen Signalgewinn hin zu hohen Magnetfeldstärken motiviert und beschäftigt sich mit den dabei auftretenden physikalischen Effekten ebenso wie mit den dazu notwendigen neuartigen Technologien. Die vorliegende Arbeit untersucht Mehrkanalantennen zur Anregung der magnetischen Kernresonanz sowie zum Empfang des resultierenden Signals bei 7.0 T. Für die magnetische Kernresonanz von Protonen ergibt sich eine Resonanzfrequenz von 300 MHz. Die zugehörige Wellenlänge in menschlichem Gewebe verlässt in diesem Frequenzbereich im Verhältnis zu den Körperabmessungen den quasistatischen Bereich. Die sich ergebende Wellenausbreitung hat Interferenzmuster in den erzeugten Bildern zur Folge, die zu klinisch nicht verwertbaren Bildinformationen führen können. Vor diesem Hintergrund wurden in dieser Arbeit Mehrkanalantennen mit 4, 8 und 16 unabhängigen Elementen zur Signalanregung und zum Empfang konzipiert, aufgebaut und untersucht. Die Erkenntnisse mündeten in der erfolgreichen Implementierung der weltweit ersten 32-Kanal Antenne zur kardiovaskulären Bildgebung bei 7.0 T. Darüber hinaus wurde eine Antenne entwickelt, welche die ersten auf der Natriumkonzentration beruhenden bewegten MRT Bilder des menschlichen Herzens bei 7.0 T ermöglichte. Der Zusammenhang zwischen Natriumkonzentration und Zellintegrität ermöglicht direkte und ortsaufgelöste Einblicke in physiologische Prozesse. Die Ergebnisse dieser Arbeit belegen die breite Anwendbarkeit von Mehrkanalantennen in der UHF MRT zur Protonen-und Natriumbildgebung und bilden eine solide technologische Basis für breitere klinische Studien, um die Ultrahochfeld MRT reif für den routinemäßigen Einsatz im Gesundheitswesen zu machen. / Magnetic resonance imaging (MRI) is a non-invasive imaging method based on the effect of nuclear magnetic resonance. It is used in healthcare as well as in research. MRI at magnetic field strengths of 1.5 Tesla and 3 Tesla is well established. The gain in signal-to-noise ratio (SNR) intrinsic to higher magnetic field strength fuels the vigorous research field of Ultrahigh field (UHF) MRI at 7.0 T and above. Nevertheless for MRI based upon proton imaging the wavelength of the transmitted electro-magnetic fields slowly departs from the semi-static regime and reaches the dimension of the transection of the human body at 7.0 T. This gives rise to constructive and destructive interferences that potentially render image quality non-diagnostic for clinical use. Therefore is work proposes the worlds’ first 32 channel antenna array for cardiovascular MRI at 7.0 T. Electro-magnetic field simulations are utilized to study the capabilities of multi-channel RF antenna arrays to mitigate destructive interferences and provided the basis for a workflow towards homogenization of the electromagnetic radio-frequency field. Pre-clinical studies showed the capabilities and limits of translating the SNR gain of UHF MRI into clinical beneficial numbers, namely increased spatial or temporal resolution or scan time shortening. To make further use of the benefits of UHR MRI and to make a step towards first-hand spatial resolved information of biological processes in human tissue sodium imaging of the human heart was enabled with the design of a tailored antenna array. The results were reconstructed into the first movies of the human heart at 7.0 T based on sodium signal. This profound technological basis for radio frequency excitation and reception in UHF MRI can be expected to pave the way for broader clinical studies at 7.0 T with the ultimate goal to improve the quality and the earliness of treatment decisions in future clinical practice.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/18347 |
Date | 21 January 2017 |
Creators | Gräßl, Andreas |
Contributors | Niendorf, Thoralf, Lange, Adam, Falcke, Martin |
Publisher | Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen, http://creativecommons.org/licenses/by-nc-sa/3.0/de/ |
Page generated in 0.0028 seconds