Return to search

Innate Mechanisms of Antimicrobial Defense Associated with the Avian Eggshell

During the course of evolution, the avian egg has developed multiple physical and chemical barriers in order to resist microbial challenges. These barriers are essential for the successful reproduction of avian species as well as to maintain safe and nutritious food for human consumption of the table egg. The calcified eggshell is a biomineralized barrier with an integrated organic matrix containing antimicrobial proteins, a hallmark of sophisticated biological structures. Calcium carbonate is deposited onto the outer shell membranes to form the calcified mammillary, palisade and vertical crystal layers; the final layer to be deposited is the outer eggshell cuticle. In this thesis, mass spectrometry-based technology was used to investigate the proteome of the outer cuticle, the mammillary cones and the shell membranes in order to gain insight into biomineralization and antimicrobial functions of the avian eggshell. Proteomics analysis of the eggshell cuticle revealed multiple antimicrobial proteins, supporting the hypothesis that the outermost cuticle layer is the first barrier against invading pathogens. The two most abundant cuticle proteins identified are similar to Kunitz-like protease inhibitor (ovocalyxin-25) and ovocalyxin-32. Multiple antimicrobial proteins were also revealed to be associated with the shell membrane fibres. Among the most abundant proteins were lysozyme C, avian β-defensin-11, ovotransferrin, ovocalyxin-36 and gallin. The biomineralized shell is also an important physical barrier against invading pathogens. Proteomics analysis of the mammillary cones, the initiation sites for shell calcification, revealed several candidate proteins involved in calcitic biomineralization. Promising candidates include nucleobindin-2 and SPARC, two calcium binding proteins previously shown to modulate mineralization. In-depth analysis of the comprehensive proteomes generated by this study revealed the presence of histones in the shell membranes, shell and cuticle compartments. Histones are cationic antimicrobial peptides, which are key molecules of the innate immune defense system of many species. This thesis reports the minimal inhibitory concentrations and minimal bactericidal concentrations of histones extracted from avian erythrocytes against Gram-positive, Gram-negative and antibiotic-resistant bacteria. Results suggest that the underlying antimicrobial mechanism is based on the interaction between histones and lipopolysaccharides / lipoteichoic acids, which are negatively charged components of bacterial cell membranes. Histones also inhibit the growth of Gram-positive biofilms; the minimal biofilm eradication concentrations were determined for S. aureus and methicillin-resistant S. aureus (MRSA). Sensitive proteomics analyses have provided great insight into the protein constituents of the eggshell matrix, with two primary roles in the innate immune defense of the egg: regulation of calcitic biomineralization and antimicrobial protection. Further research on these proteins and their functions can provide a new focus for selective breeding programs looking to enhance the egg’s natural defenses, or provide inspiration for alternatives to conventional antibiotics, such as the histones.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/32299
Date January 2015
CreatorsRose-Martel, Megan
ContributorsHincke, Maxwell
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds