Protein-protein interactions (PPIs) are responsible for the regulation of a variety of important functions within living organisms. Compounds which can selectively modulate aberrant PPIs are novel therapeutic candidates for treating human diseases. Whilst PPIs have traditionally been considered as "undruggable", research in this area has led to the emergence of several effective methodologies for targeting PPIs. One such methodology is peptide stapling, which involves constraining a short peptide into its native alpha-helical form by forming a covalent link between two of its amino acid side-chains. The Sondheimer dialkyne reagent has previously been used in strain-promoted double-click cycloadditions with diazidopeptides to generate stapled peptides that are capable of inhibiting PPIs. However, the Sondheimer dialkyne suffers from poor water-solubility; it decomposes rapidly in aqueous solutions which limits its application in biological systems. This dissertation describes the design and synthesis of new substituted variants of the Sondheimer dialkyne with increased solubility and stability, that are suitable for application in strain promoted double click peptide stapling. In total, ten different derivatives were generated; of these, a meta-trimethylammonium substituted variant was found to have particularly high water-solubility and aqueous stability, as well as high azide reactivity. The substituted Sondheimer dialkynes were applied to the strain promoted double click stapling of p53-based diazido peptides in an effort to generate stapled peptide-based inhibitors of the oncogenic p53 MDM2 PPI, a validated target for anticancer therapeutics. Three stapled peptides were found to have inhibitory activity, thus demonstrating the utility of the novel dialkynes in the preparation of PPI inhibitors. The functionalised stapled peptide formed from a meta-fluoro substituted Sondheimer dialkyne was found to be the most potent inhibitor. All ortho-substituted Sondheimer dialkynes were found to be unreactive, whereas those with a meta-trimethylammonium substituent were highly reactive when compared to other meta-substituted dialkynes. These patterns in azide reactivity could be explained through X-ray crystallographic studies and density functional theory calculations.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:767779 |
Date | January 2019 |
Creators | Sharma, Krishna |
Contributors | Spring, David |
Publisher | University of Cambridge |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.repository.cam.ac.uk/handle/1810/288602 |
Page generated in 0.0018 seconds