Depuis son invention en 1986, les microscopes à force atomique (AFM) ont été des puissants outils pour la caractérisation des matériaux et des propriétés des matériaux à l'échelle nanométrique. Cette thèse est entièrement dédiée à la mesure de l'interaction entre une sonde AFM et une surface avec une nouvelle technique AFM appelée Force Feedback Microscopy (FFM). La technique a été développée et utilisée pour l'étude d'échantillons biologiques. Le principe central de la technologie FFM est que la force totale moyenne appliquée à la pointe est égal à zéro. En conséquence, en présence d'une interaction pointe-échantillon, une force égale et contraire doit être appliquée à la pointe par une boucle de rétroaction. La force de réaction est ici appliquée à la pointe à travers le déplacement d'un petit élément piézoélectrique positionné à la base du levier AFM. La boucle de rétroaction permet d'éviter instabilités mécaniques tels que le saut au contact, permettant la mesure complète de la courbe d'interaction. En plus, il donne la possibilité de mesurer simultanément les parties élastique et inélastique de l'interaction. La technique a été appliquée à l'étude des interactions à l'interface solide/gaz, avec un intérêt particulier pour l'observation de la formation et de la rupture des ponts capillaires entre pointe et échantillon. Ensuite, on a focalisé notre attention aux interfaces solide/liquide. Dans ce contexte, courbes complètes de type DLVO sont caractérisées d'un point de vue élastique et dissipatif. Nous avons développé des nouveaux modes d'imagerie AFM pour l'étude des biomolécules. Images de phospholipides et de l'ADN à force constante ont été réalisées et certaines propriétés mécaniques comme le module de Young des échantillons ont été évaluées. En plus, nous avons réalisé une étude spectroscopique de l'élasticité et du coeffcient d'amortissement de l'interaction entre des cellules vivantes de type PC12 et une pointe AFM en nitrure de silicium. L'étude montre que le FFM est un instrument capable de mesurer l'interaction à des fréquences qui ne sont pas nécessairement liées aux résonances caractéristiques du levier. L'étude spectroscopique pourrait avoir dans le futur des applications importantes pour l'étude des biomolécules et des polymères.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01063820 |
Date | 20 January 2014 |
Creators | Costa, Luca |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0023 seconds