Return to search

Biorthogonal Polynomials

In this thesis we present some fundamental results regarding orthogonal polynomials and biorthogonal polynomials, the latter defined as in the article "Cauchy Biorthogonal Polynomials", authored by Bertola, Gekhtman, and Szmigielski. We show that total positivity of the kernel can be weakened and how this implies that interlacement for biorthogonal polynomials holds in general. A counterexample is provided showing that in general there does not exist a four-term recurrence relation such as the one found for the Cauchy kernel. As a direct consequence we show that biorthogonal polynomial sequences cannot be considered orthogonal polynomial sequences by an appropriate choice of orthogonality measure. Furthermore, we motivate a conjecture stating that the more general form of interlacement that exists for orthogonal polynomials also exists for biorthogonal polynomials. We end with suggesting some further work that could be of interest.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-140733
Date January 2017
CreatorsWebb, Grayson
PublisherLinköpings universitet, Matematik och tillämpad matematik, Linköpings universitet, Tekniska fakulteten
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.1436 seconds