Return to search

Quenching of the Fluorescence of Tris (2 2-Bipyridine) Ruthenium(II) [Ru(bipy)3]2+ by a Dimeric Copper(II) Complex.

The quenching of the [Ru(bipy)3]2+ by Cu2L2+ was studied and the data were plotted with the Stern-Volmer equation. The plot showed a break and was divided into 2 regions, <0.5 and >0.5 Cu2L2+: [Ru(bipy)3]2+ molar ratio. Quenching above the 0.5 Cu2L2+: [Ru(bipy)3]2+ molar ratio was slower (330 x 10-6 M-1s-1) than the quenching rate reaction below 0.5 ratio (387 x 10-6 M-1s-1).
With Cu2L2+ being a dimeric complex the break and differences in the quenching reaction rates can be explained in terms of the stoichiometry. When the Cu2L2+: [Ru(bipy)3]2+ ratio is < 0.5, then each [Ru(bipy)3]2+ can interact with 1 Cu2L2+ dimer. At 0.5 then there is exactly a 1:1 ratio RuII : CuII. Above the 0.5 ratio the [Ru(bipy)3]2+ can interact with maybe only one of the Cu2L2+'s in the dimer, or with a [Ru(bipy)3]2+: Cu2L2+ unit, so the quenching is less efficient.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-2538
Date17 August 2011
CreatorsCummins, Kevin E.
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.0022 seconds