Return to search

Segmentação de imagens baseada em redes complexas e superpixels: uma aplicação ao censo de aves / Image segmentation based on complex networks and superpixels: an application to birds census

Uma das etapas mais importantes da análise de imagens e, que conta com uma enorme quantidade de aplicações, é a segmentação. No entanto, uma boa parte das técnicas tradicionais apresenta alto custo computacional, dificultando sua aplicação em imagens de alta resolução como, por exemplo, as imagens de ninhais de aves do Pantanal que também serão analisadas neste trabalho. Diante disso, é proposta uma nova abordagem de segmentação que combina algoritmos de detecção de comunidades, pertencentes à teoria das redes complexas, com técnicas de extração de superpixels. Tal abordagem é capaz de segmentar imagens de alta resolução mantendo o compromisso entre acurácia e tempo de processamento. Além disso, como as imagens de ninhais analisadas apresentam características peculiares que podem ser mais bem tratadas por técnicas de segmentação por textura, a técnica baseada em Markov Random Fields (MRF) é proposta, como um complemento à abordagem de segmentação inicial, para realizar a identificação final das aves. Por fim, devido à importância de avaliar quantitativamente a qualidade das segmentações obtidas, um nova métrica de avaliação baseada em ground-truth foi desenvolvida, sendo de grande importância para a área. Este trabalho contribuiu para o avanço do estado da arte das técnicas de segmentação de imagens de alta resolução, aprimorando e desenvolvendo métodos baseados na combinação de redes complexas com superpixels, os quais alcançaram resultados satisfatórios com baixo tempo de processamento. Além disso, uma importante contribuição referente ao censo demográfico de aves por meio da análise de imagens aéreas de ninhais foi viabilizada por meio da aplicação da técnica de segmentação MRF. / Segmentation is one of the most important steps in image analysis with a large range of applications. However, some traditional techniques exhibit high computational costs, hindering their application in high resolution images such as the images of birds nests from Pantanal, one of Brazilian most important wetlands. Therefore, we propose a new segmentation approach that combines community detection algorithms, originated from the theory of the complex networks, with superpixels extraction techniques. This approach is capable of segmenting high resolution images while maintaining the trade-off between accuracy and processing time. Moreover, as the nest images exhibit peculiar characteristics that can be better dealt with texture segmentation techniques, the Markov Random Fields (MRF) technique is proposed, as a complement to the initial approach, to perform the final identification of the birds. Finally, due to the importance of the quantitatively evaluation of the segmentation quality, a new evaluation metric based on ground-truth was developed, being of great importance to the segmentation field. This work contributed to the state of art of high resolution images segmentation techniques, improving and developing methods based on combination of complex networks and superpixels, which generated satisfactory results within low processing time. Moreover, an important contribution for the birds census by the analysis of aerial images of birds nests was made possible by application of the MRF technique.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-16032015-113613
Date19 September 2014
CreatorsGlenda Michele Botelho
ContributorsJoão do Espírito Santo Batista Neto, André Guilherme Ribeiro Balan, Adilson Gonzaga, Alexandre Luis Magalhães Levada, Agma Juci Machado Traina
PublisherUniversidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds