Return to search

DNA methylation at the neocentromere

The Centromere is a vital chromosomal structure that ensures faithful segregation of replicated chromosomes to their respective daughter cells. With such an important structure, one would expect the underlying centromeric DNA sequence would be highly conserved across all species. It turns out that the underlying centromeric DNA sequences between species ranging from the yeast, fly, mouse to humans are in fact highly diverged suggesting a DNA sequence independent or an epigenetic mechanism of centromere formation. / Neocentromeres are centromeres that form de-novo at genomic locations that are devoid of highly repetitive a-satellite DNA sequences of which normal centromeres are usually comprised from. To date, the 10q25 neocentromere is the most well-characterised, fully functional human centromere that has been used previously to characterise the extent of a number of centromeric protein binding domains and characterise the properties of the underlying DNA sequence. Along with other factors, the existence of neocentromeres has given rise to a hypothesis where centromeres are defined by epigenetic or DNA sequence independent mechanisms. / The putative 10q25 neocentromere domain was recently redefined by high resolution mapping of Centromeric protein A (CENP-A) binding through a chromatin immunoprecipitation and array (CIA) analysis. The underlying DNA sequence was investigated to determine and confirm that the formation of the 10q25 neocentromere was through an epigenetic mechanism. Through a high-density restriction fragment length polymorphism (RFLP) analysis using overlapping PCR amplified DNA derived from genomic DNA representing the 10q25 region before and after neocentromere activation. No sequence polymorphisms, large insertions or deletions were detected and confirmed the epigenetic hypothesis of centromere formation. / DNA methylation is one of many epigenetic factors that are important for cellular differentiation, gene regulation and genomic imprinting. As the mechanisms and functions of DNA methylation have been well characterised, its role at the 10q25 neocentromere was investigated to try and identify the candidate epigenetic mechanism involved in the formation of centromeres. DNA methylation across the neocentromere was assessed using sodium bisulfite PCR and sequencing of selected CpG islands located across the 10q25 neocentromere. Overall, the methylation level of the selected CpG islands demonstrated no difference in DNA methylation before and after neocentromere activation. However, significant hypomethylation upon neocentromere formation was detected close to the protein-binding domain boundaries mapped previously suggesting that this may have a role in demarcating protein binding domains at the neocentromere. / Further analysis of DNA methylation investigated non-CpG island methylation at sites defined as CpG islets and CpG orphans. Interestingly, the DNA methylation level measured at selected CpG islets and CpG orphans across the 10q25 neocentromere were not completely hypermethylated as previously thought, but demonstrated variable methylation that became fully hypermethylated upon neocentromere activation in most sites investigated. These results suggested that a role for DNA methylation existed at the 10q25 neocentromere and that it occurred at sites devoid of CpG islands. / This study has found that DNA methylation at non-CpG island sites was variable contrary to popular belief and, was linked with neocentromere formation through the observation of increased DNA methylation at the 10q25 neocentromere. Inhibition of DNA methylation demonstrated increased neocentromere instability and a decrease in methylation of these CpG islets and CpG orphans confirming the importance of DNA methylation at neocentromeres. This study has characterised a new class of sequences that are involved in the maintenance of chromatin structure through DNA methylation at the 10q25 neocentromere.

Identiferoai:union.ndltd.org:ADTP/269906
CreatorsWong, Nicholas Chau-Lun
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightsvaliduser, Terms and Conditions: Copyright in works deposited in the University of Melbourne Eprints Repository (UMER) is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only, download, print, and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works., Restricted Access: University of Melbourne Staff and Students Only, Login required please enter your University of Melbourne email username and password in the login boxes at the top righthand of this repository page to access this item.

Page generated in 0.0018 seconds