The thesis compares several non-linear regression methods on synthetic data sets gen- erated using standard benchmarks for a continuous black-box optimization. For that com- parison, we have chosen the following regression methods: radial basis function networks, Gaussian processes, support vector regression and random forests. We have also included polynomial regression which we use to explain the basic principles of regression. The com- parison of these methods is discussed in the context of black-box optimization problems where the selected methods can be applied as surrogate models. The methods are evalu- ated based on their mean-squared error and on the Kendall's rank correlation coefficient between the ordering of function values according to the model and according to the function used to generate the data. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:347187 |
Date | January 2015 |
Creators | Kopal, Vojtěch |
Contributors | Holeňa, Martin, Gemrot, Jakub |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0016 seconds