Return to search

Cellular Neural Networks with Switching Connections

Artificial neural networks are widely used for parallel processing of data analysis and visual information. The most prominent example of artificial neural networks is a cellular neural network (CNN), composed from two-dimensional arrays of simple first-order dynamical systems (“cells”) that are interconnected by wires. The information, to be processed by a CNN, represents the initial state of the network, and the parallel information processing is performed by converging to one of the stable spatial equilibrium states of the multi-stable CNN. This thesis studies a specific type of CNNs designed to perform the winner-take-all function of finding the largest among the n numbers, using the network dynamics. In a wider context, this amounts to automatically detecting a target spot in the given visual picture. The research, reported in this thesis, demonstrates that the addition of fast on-off switching (blinking) connections significantly improves the functionality of winner-take-all CNNs. Numerical calculations are performed to reveal the dependence of the probability, that the CNN correctly classifies the largest number, on the switching frequency.

Identiferoai:union.ndltd.org:GEORGIA/oai:digitalarchive.gsu.edu:math_theses-1119
Date06 May 2012
CreatorsDevoe, Malcom, Devoe, Malcom W, Jr.
PublisherDigital Archive @ GSU
Source SetsGeorgia State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMathematics Theses

Page generated in 0.0034 seconds