Return to search

Microphase Separation Studies in Styrene-Diene Block Copolymer-based Hot-Melt Pressure- Sensitive Adhesives

This dissertation is aimed at understanding the microstructure evolution in styrene — diene block copolymer — based pressure-sensitive adhesive compositions in melt. The work also focuses on determining the microphase separation mechanism in adhesive melts containing various amounts of low molecular weight resin (tackifiers) blended with styrene — diene block copolymers. To understand the correlation between adhesive morphology and their dynamic mechanical behavior, small angle X-ray scattering (SAXS) and rheological analysis were performed on blends with different compositions.

A modified Percus — Yevick model combined with Gaussian functions was used fit the liquid like disordered and bcc — ordered peaks of the SAXS intensity profiles. The morphological parameters derived from SAXS analysis corresponded to features such as the size and extent of ordering of the microphase separated polystyrene domains. The variation in these parameters with respect to temperature and adhesive composition correlated reasonably well with the trends observed in the shear modulus measured using rheological analysis. It was found that the ordering of polystyrene domains was influenced by the tackifier content in the adhesive blends. Polymer chain mobility was determined to be the dominant factor governing ordering kinetics, which depended on both the quench temperature and tackifier content in the blends. The addition of increasing amounts of tackifier eventually leads to a shift from a nucleation and growth type mechanism to a spinodal decomposition mechanism for phase separation and ordering. The compatibility of the tackifier with the polystyrene chains had a significant impact on the morphological transitions and microphase separation in adhesive blends. The blends containing a styrene — incompatible tackifier showed ordering over a broader range of temperatures compared to the blends containing a polystyrene — compatible tackifier. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/51205
Date21 January 2015
CreatorsDixit, Ninad Yogesh
ContributorsChemistry, Moore, Robert Bowen, Martin, Stephen Michael, Joseph, Eugene Gregory, Turner, S. Richard
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0022 seconds