Xiang Xiaoyan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references. / Abstracts in English and Chinese. / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background of Hypertension --- p.1 / Chapter 1.1.1 --- Definition of Blood Pressure --- p.1 / Chapter 1.1.2 --- Hypertension and Its Prevalence --- p.2 / Chapter 1.2 --- Blood Pressure Measurement Techniques --- p.5 / Chapter 1.2.1 --- Invasive Blood Pressure Measurement Techniques --- p.5 / Chapter 1.2.2 --- Non-invasive Blood Pressure Measurement Techniques --- p.6 / Chapter 1.3 --- Accurate BP Measurements --- p.12 / Chapter 1.3.1 --- Error Source for BP Measurement by Conventional Techniques --- p.12 / Chapter 1.3.2 --- Accurate BP Measurement --- p.13 / Chapter 1.4 --- Objectives of the Thesis --- p.15 / Chapter 1.5 --- Organization of the Thesis --- p.16 / References --- p.17 / Chapter Chapter 2 --- Current Standards for the Conventional Blood Pressure Measurement Devices --- p.20 / Chapter 2.1 --- Introduction --- p.20 / Chapter 2.2 --- Current Standards for the Cuff-based BP Measurement Devices --- p.21 / Chapter 2.2.1 --- AAMI Standard --- p.21 / Chapter 2.2.2 --- BHS Protocol --- p.22 / Chapter 2.2.3 --- Other Protocols --- p.23 / Chapter 2.3 --- Comparison of the 2002 AAMI and 1993 BHS Protocols - Protocol Setup --- p.25 / Chapter 2.4 --- Comparison of the 2002 AAMI and 1993 BHS Protocols 一 Accuracy Criteria --- p.29 / Chapter 2.5 --- Relationship between the AAMI Accuracy Criteria and the BHS Grading System --- p.31 / Chapter 2.5.1 --- Theoretical Mapping Relationship --- p.31 / Chapter 2.5.2 --- Application of the Mapping Model: Estimate the BHS Grades from the Reported Sample ME and SD --- p.34 / Chapter 2.5.3 --- Application of the Mapping Model: Explain the Evaluation of the Results from the Clinical Survey by the ESH --- p.36 / Chapter 2.6 --- Discussion --- p.36 / References --- p.40 / Chapter Chapter 3 --- Distribution Analysis of the Blood Pressure Measurement Errors --- p.42 / Chapter 3.1 --- Introduction --- p.42 / Chapter 3.2 --- Error Distribution Estimated from the Published Data --- p.43 / Chapter 3.2.1 --- Methodology --- p.43 / Chapter 3.2.2 --- Data Analysis --- p.44 / Chapter 3.2.3 --- Session Summary --- p.46 / Chapter 3.3 --- Error Distribution Estimated from the Experimental Data --- p.46 / Chapter 3.3.1 --- BP Measurement Error Obtained from Automatic BP Meter --- p.46 / Chapter 3.3.2 --- Distribution Analysis by the Normal Quantile-Quantile Plot --- p.47 / Chapter 3.3.3 --- Background of Student's t Distribution --- p.48 / Chapter 3.3.4 --- Parameter Estimation - Maximum Likelihood Method --- p.50 / Chapter 3.3.5 --- Goodness-of-fit Test - Kolmogorov-Smirnov Test --- p.53 / Chapter 3.3.6 --- Goodness-of-fit Test ´ؤ Chi-Square Test --- p.56 / Chapter 3.4 --- Discussion --- p.63 / References --- p.65 / Chapter Chapter 4 --- A Model Based Study of the Parameters Used by Existing Standards --- p.67 / Chapter 4.1 --- Introduction --- p.67 / Chapter 4.2 --- Background of Method Comparison Study --- p.68 / Chapter 4.2.1 --- Four Areas in Method Comparison Study --- p.68 / Chapter 4.2.2 --- Analysis of Previous Methodology and Statistical Parameters --- p.70 / Chapter 4.3 --- Theoretical Mapping Relationship: Based on the General t Distribution --- p.72 / Chapter 4.3.1 --- "Relationship among CP5, CP10 and CP15 in Each Grade for the 1993 BHS Protocol" --- p.76 / Chapter 4.3.2 --- Relationships between the Criteria in Each Grade for the 1993 BHS Protocol and the AAMI Standard --- p.77 / Chapter 4.3.3 --- Comparison of Parameters --- p.80 / Chapter 4.4 --- Mean of the Absolute Errors (MAE) and Its Estimation --- p.81 / Chapter 4.4.1 --- The Relationship between MAE and Other Parameters --- p.81 / Chapter 4.4.2 --- Analysis of the Example Data --- p.84 / Chapter 4.4.3 --- Estimation of MAEt --- p.84 / Chapter 4.5 --- Discussion --- p.88 / References --- p.90 / Chapter Chapter 5 --- Experimental Study and an Evaluation Protocol Proposed for the Wearable BP Measurement Devices --- p.92 / Chapter 5.1 --- Introduction --- p.92 / Chapter 5.2 --- Description of the Experiment --- p.93 / Chapter 5.3 --- Data Analysis --- p.95 / Chapter 5.3.1 --- Data Used for the Study --- p.95 / Chapter 5.3.2 --- Error Distribution Analysis --- p.96 / Chapter 5.3.3 --- Evaluation of the Automatic BP Meter and the PTT-Based BP Measurement Device by AAMI and 1993 BHS Standards --- p.99 / Chapter 5.3.4 --- Evaluation the Automatic BP Meter and the PTT-Based BP Measurement Device by the Proposed Parameter --- p.101 / Chapter 5.4 --- Proposed Evaluation Procedure --- p.101 / Chapter 5.4.1 --- Introduction --- p.101 / Chapter 5.4.2 --- Determination of Parameters and Criteria --- p.102 / Chapter 5.4.3 --- Proposed Evaluation Procedure --- p.103 / Chapter 5.5 --- Discussion --- p.105 / References --- p.108 / Chapter Chapter 6 --- Conclusion and Future Work --- p.110 / Chapter 6.1 --- Conclusion and Major Contributions --- p.110 / Chapter 6.2 --- Future Works --- p.113 / References --- p.115 / Appendix A Deviation of Some Equations --- p.116 / Chapter A.1 --- CP for Certain Limit of L as a Function of ME and SD --- p.116 / Chapter A.2 --- MAE as a Function of Location and Scale Parameters --- p.119 / Chapter A.3 --- "Relationship between ME, MAE and Root Mean Squared Error (RMSE) if the error distribution is unknown" --- p.121 / Appendix B List of Publications and Awards Related to This Study --- p.123
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325879 |
Date | January 2006 |
Contributors | Xiang, Xiaoyan., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xiv, 123 leaves : ill. ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0123 seconds