Actuellement, dans les plateformes aérospatiales, le nombre et le besoin d’intégration des équipements électriques et électroniques sont grandissant du fait que leurs fonctions nécessitent de plus en plus de puissance. L’objectif de minimisation des coûts et surtout la disponibilité des dispositifs électroniques forcent les concepteurs et les fabricants de ces plateformes à s’orienter vers des produits commerciaux (dits grand public). La fiabilité des boîtiers des composants de puissance doit être évaluée dans les environnements sévères des applications aérospatiales. Une dizaine de composants électroniques de puissance a été sélectionnée en fonction de leur disponibilité et l’adéquation de leurs performances électriques et thermiques aux exigences des applications aérospatiales. Ces composants intègrent différents types de semi-conducteurs tels que le silicium, le carbure de silicium et le nitrure de gallium. Tout d’abord, une étude a été menée sur les potentiels modes et mécanismes de défaillance de ces composants électroniques de puissance dans ces environnements. Elle a permis de mettre en place plusieurs procédures de vieillissement accéléré ainsi que le développement de deux bancs de tests pour suivre électriquement le vieillissement de ces composants. Ces tests ont été menés sur deux diodes Schottky SiC, commercialisées par deux fabricants, regroupant les technologies des boîtiers des composants électroniques de puissance. Les analyses de défaillance ont tout d’abord mis en évidence une immaturité de la technologie de la jonction Schottky des puces SiC de l’une des deux diodes soumis à une tension inverse. Ces défaillances sont attribuées à la destruction partielle de la structure Schottky et indique une reproductibilité non maitrisée de la fabrication des puces de ce composant. Ensuite, ces analyses ont mis en évidence plusieurs mécanismes de vieillissement lors de tests simulant des régimes « On-Off » des applications (cycles thermiques de puissance). Celui considéré comme la cause de la défaillance est la fissuration de la soudure des fils d’interconnexion avec la puce. Une loi pouvant décrire la fissuration des interconnexions a été identifiée à la suite des évolutions des cycles thermiques de puissance à l’approche de la défaillance. L’étude de ces évolutions a permis de démarrer l’élaboration d’un modèle physique de défaillance adapté aux interconnexions de la puce en vue d’estimer la durée de vie des composants commerciaux. / Currently, in the aerospace platforms, the number and the need for integration of the electric and electronic equipment are growing because their functions require more and more power. The goal of cost minimization and mostly the availability of power electronic devices push the designers and the manufacturers of these platforms moving towards commercial products (Component Off-The Shelf). The packaging reliability of power electronic components must be assessed in harsh environments of aerospace applications. A dozen of power electronic components have been selected in accordance with their availability and with the adequacy of their electrical and thermal performances according to the requirements of aerospace applications. These components integrate different types of semi-conductors such as silicon, silicon carbide and gallium nitride. Foremost, a study has been leaded on the potential failure modes and mechanisms of these power electronic components in these environments. It has permitted to put in place several procedures of accelerated ageing and the development of two test benches to electrically monitor the ageing of these components. These tests have been carried on two SiC Schottky diodes, marketed by two manufacturers, gathering the technologies of the packaging of power electronic components. The failure analyses have first highlighted an immaturity of the Schottky junction technology of the SiC die of one of the two diodes subjected to a reverse voltage. These failures are attributed to the partial destruction of the Schottky structure and indicate a not mastered reproducibility of the die manufacturing of these components. Then, these analyses have highlighted several ageing mechanisms during tests simulating « On-Off » power of applications (power thermal cycles). One considered as the failure cause is the cracking of the welding of the wire bonding with the die. A behavioral law that can describe the cracking of the interconnections has been identified according to the evolutions of the power thermal cycles when near to failure. The study of these evolutions have permitted to start the elaboration of a physical model of failure adapted to the die interconnections in order to estimate the lifetime of commercial components.
Identifer | oai:union.ndltd.org:theses.fr/2017INPT0012 |
Date | 06 February 2017 |
Creators | Parent, Guillaume |
Contributors | Toulouse, INPT, Carrillo, Francisco Javier, Vidal, Paul-Etienne |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds