Return to search

Photophysics of Organic Probes and their Applications in Bioimaging & Photodynamic Therapy

Over the past several decades the phenomenon of luminescence (divided into fluorescence and phosphorescence) has received great attention in the field of biological science. This quest has motivated scientists for a variety of applications, including fluorescence imaging. Fluorescence microscopy techniques that provide unique advantages, such as high spatial resolution and superior sensitivity, have been regarded as attractive tools in biophotonics. With the progress of ultrafast laser sources, two-photon absorption (2PA), in which a molecule absorbs two photons simultaneously, has opened possibilities of using it for various applications. Two-photon fluorescence microscopy (2PFM), which affords deeper tissue penetration and excellent three-dimensional (3D) images, is now being widely employed for bioimaging. This dissertation focuses on the design, synthesis, and photophysical characterization of new fluorophores, as well as desirable applications. Chapter 1 gives an account of a brief introduction of luminescence and 2PA, as well as their utilities in biological applications. In chapter 2, a series of new BODIPY derivatives are presented along with their comprehensive linear and nonlinear characteristics. They exhibited excellent photophysical properties including large extinction coefficients, high fluorescence quantum yields, good photostability, and reasonable two-photon absorption cross sections. Two promising compounds were further evaluated as NIR fluorescent probes in one-photon and two-photon fluorescence imaging. Chapter 3 provides the design, synthesis, and photophysical characterization of two BODIPY dyes. In order to assess the potential of using the dye as a fluorescent probe, Lysotracker Red, a commercial lysosomal marker, was investigated for comparison purposes. The results indicate that figure of merit of both compounds were three orders of magnitude higher than that of Lysotracker Red. With an eye towards applications, one of the compounds was encapsulated in silica-based nanoparticles for in vitro and ex vivo one-photon and two-photon fluorescence imaging, in which the surface of the nanoparticle was modified with RGD peptides for specific targeting. The nanoprobe exhibited good biocompatibility and highly selective RGD-mediated uptake in ?V?3 integrin-overexpressing cancers, while maintaining efficient fluorescence quantum yield and high photostability. In chapter 4, the synthesis and photophysical properties of a novel photosensitizer with heavy atoms (halogen) were presented. The dye exhibited low fluorescence quantum yield, resulting in high singlet oxygen generation quantum yield. In vitro photodynamic studies demonstrated that photosensitization of the agent can induce cellular damage, subsequently leading to cell death by a necrotic cell death mechanism, supporting the therapeutic potential of using the agent for photodynamic therapy.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-2488
Date01 January 2015
CreatorsKim, Bosung
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0019 seconds