Return to search

Intelligent Body Monitoring / Övervakning av mänskliga rörelser

The goal of this project was to make a shirt with three embedded IMU sensors (Inertial Measurement Unit) that can measure a person’s movements throughout an entire workday. This can provide information about a person’s daily routine movements and aid in finding activities which can lead to work-related injuries in order to prevent them. The objective was hence to construct a sensor fusion framework that could retrieve the measurements from these three sensors and to create an estimate of the human body orientation and to estimate the angular movements of the arms. This was done using an extended Kalman filter which uses the accelerometer and magnetometer values to retrieve the direction of gravity and north respectively, thus providing a coordinate system that can be trusted in the long term. Since this method is sensitive to quick movements and magnetic disturbance, gyroscope measurements were used to help pick up quick movements. The gyroscope measurements need to be integrated in order to get the angle, which means that we get accumulated errors. This problem is reduced by the fact that we retrieve a correct long-term reference without accumulated errors from the accelerometer and magnetometer measurements. The Kalman filter estimates three quaternions describing the orientation of the upper body and the two arms. These quaternions were then translated into Euler angles in order to get a meaningful description of the orientations. The measurements were stored on a memory card or broadcast on both the local net and the Internet. These data were either used offline in Matlab or shown in real-time in the program Unity 3D. In the latter case the user could see that a movement gives rise to a corresponding movement on a skeleton model on the screen.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-72579
Date January 2011
CreatorsNorman, Rikard
PublisherLinköpings universitet, Reglerteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds