This Master thesis aims at designing, assembling and operating a prototypal luminescentbolometer containing a candidate with high Q-value (116Cd and 100Mo)for the study of the neutrinoless double- decay. The crystal is scintillating (with 116CdWO4 and Li2MoO4 compounds). The prototype is designed according to a simple thermal model and cooled down to 18 mK. Data analysis of the 116CdWO4 crystal determines the energy resolution (intrinsicand in the ROI) and the alpha/beta discrimination power. It includes a full interpretation of the background energy spectrum in terms of environmental radioactivity and an evaluation of the crystal radiopurity by the detection of internal contamination of the detector. An evaluation of the potential of a future experiment based on the 116CdWO4developed prototype is performed, ascertaining the feasibility of large scale experiments to search for neutrinoless double beta decay. The use of the thermal model of the detector response to interpret its bolometric behaviour and the study of future optimizations of the detector performance concludes this project.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-60660 |
Date | January 2017 |
Creators | Gimbal-Zofka, Yann |
Publisher | Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds