A series of immiscible crystalline-crystalline diblock copolymers, poly(ethylene oxide)-b-(£`-caprolactone) (PEO-b-PCL), were synthesized through ring-opening polymerization and then blended with phenolic resin. FT-IR analyses provide that the ether group of PEO is a stronger hydrogen bond acceptor than the carbonyl group of PCL with the hydroxyl group of phenolic. Phenolic after curing with hexamethylenetetramine (HMTA) results in the excluded and confined PCL phase based on differential scanning calorimeter (DSC) analyses. This effect leads to the formation of a variety of composition-dependent nanostructures, including disorder, gyroid and short cylinder. The self-organized mesoporous phenolic resin was only found at 40~60 wt% phenolic content by intriguing balance of the contents of phenolic, PEO, and PCL. In addition, the mesoporous structure was destroyed with the increasing the ratio of PCL to PEO in block copolymers by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) analyses. In addition, the large and long-range order of bicontinuous gyroid-type mesoporous carbon was obtained from mesoporous gyroid phenolic resin calcined at 800 ¢XC under nitrogen.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0726111-152035 |
Date | 26 July 2011 |
Creators | Lin, Yu-De |
Contributors | Shiao-Wei Kuo, Jin-Long Hong, Yeo-Wan Chiang, ming chen |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0726111-152035 |
Rights | campus_withheld, Copyright information available at source archive |
Page generated in 0.0019 seconds