Return to search

Décomposition booléenne des tableaux multi-dimensionnels de données binaires : une approche par modèle de mélange post non-linéaire / Boolean decomposition of binary multidimensional arrays using a post nonlinear mixture model

Cette thèse aborde le problème de la décomposition booléenne des tableaux multidimensionnels de données binaires par modèle de mélange post non-linéaire. Dans la première partie, nous introduisons une nouvelle approche pour la factorisation booléenne en matrices binaires (FBMB) fondée sur un modèle de mélange post non-linéaire. Contrairement aux autres méthodes de factorisation de matrices binaires existantes, fondées sur le produit matriciel classique, le modèle proposé est équivalent au modèle booléen de factorisation matricielle lorsque les entrées des facteurs sont exactement binaires et donne des résultats plus interprétables dans le cas de sources binaires corrélées, et des rangs d'approximation matricielle plus faibles. Une condition nécessaire et suffisante d'unicité pour la FBMB est également fournie. Deux algorithmes s'appuyant sur une mise à jour multiplicative sont proposés et illustrés dans des simulations numériques ainsi que sur un jeu de données réelles. La généralisation de cette approche au cas de tableaux multidimensionnels (tenseurs) binaires conduit à la factorisation booléenne de tenseurs binaires (FBTB). La démonstration de la condition nécessaire et suffisante d’unicité de la décomposition booléenne de tenseurs binaires repose sur la notion d'indépendance booléenne d'une famille de vecteurs. L'algorithme multiplicatif fondé sur le modèle de mélange post non-linéaire est étendu au cas multidimensionnel. Nous proposons également un nouvel algorithme, plus efficace, s'appuyant sur une stratégie de type AO-ADMM (Alternating Optimization -ADMM). Ces algorithmes sont comparés à ceux de l'état de l'art sur des données simulées et sur un jeu de données réelles / This work is dedicated to the study of boolean decompositions of binary multidimensional arrays using a post nonlinear mixture model. In the first part, we introduce a new approach for the boolean factorization of binary matrices (BFBM) based on a post nonlinear mixture model. Unlike the existing binary matrix factorization methods, the proposed method is equivalent to the boolean factorization model when the matrices are strictly binary and give thus more interpretable results in the case of correlated sources and lower rank matrix approximations compared to other state-of-the-art algorithms. A necessary and suffi-cient condition for the uniqueness of the BFBM is also provided. Two algorithms based on multiplicative update rules are proposed and tested in numerical simulations, as well as on a real dataset. The gener-alization of this approach to the case of binary multidimensional arrays (tensors) leads to the boolean factorisation of binary tensors (BFBT). The proof of the necessary and sufficient condition for the boolean decomposition of binary tensors is based on a notion of boolean independence of binary vectors. The multiplicative algorithm based on the post nonlinear mixture model is extended to the multidimensional case. We also propose a new algorithm based on an AO-ADMM (Alternating Optimization-ADMM) strategy. These algorithms are compared to state-of-the-art algorithms on simulated and on real data

Identiferoai:union.ndltd.org:theses.fr/2018LORR0222
Date14 December 2018
CreatorsDiop, Mamadou
ContributorsUniversité de Lorraine, Brie, David, Souloumiac, Antoine
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds