Return to search

Catalytic Role of Boron Nitride in the Thermal Decomposition of Ammonium Perchlorate

The decomposition of Ammonium Perchlorate (AP), a strong oxidizer used in solid rocket propellant, is widely studied in an attempt to increase the burn characteristics of propellants. Many materials have been shown to catalyze its decomposition, but little is known about the mechanism by which AP decomposition becomes catalyzed. In this study, Boron Nitride (BN) nanostructures, a material previously unknown to act as a catalyst, is studied. The decomposition reaction is studied by thermo-gravimetric analysis / differential scanning calorimetry, X-ray photoelectron spectroscopy, fourier transform infrared spectroscopy, transmission electron microscopy and scanning electron microscopy. The goal of this study is to discover the activation energy of this catalyst reaction, intermediary products of the reaction, mechanism of reaction and end state of the boron nitride nanostructures (ie, if the BN acts as a true catalyst, or participates on the overall reaction and has some end state that*s different from the initial state). Four variations of BN have been synthesized using a hydrothermal process; BN nanoribbons, Boron Rich BN, Nitrogen-Rich BN, and high surface area BN. It is shown that the decomposition of AP is significantly altered when in the presence of BN and the mechanism through which BN catalyzes the decomposition is most likely the presence of oxidized nitrogen species on the BN material.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1672
Date01 January 2015
CreatorsGrossman, Kevin
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0016 seconds