Return to search

Enantioselective Synthesis of Tertiary Boronic Esters Through Conjunctive Cross-Coupling and Cyclobutene Diboration:

Thesis advisor: Marc M. Snapper / Thesis advisor: James J. Morken / This dissertation will present three main projects focusing on the catalytic enantioselective synthesis and stereospecific functionalization of tertiary alkylboronates. In the first project, acyl chlorides were incorporated as a new class of electrophile in conjunctive cross-coupling, from which, a variety of tertiary β-boryl amides were successfully synthesized with high enantioselectivity. The utility of the tertiary alkylboronates products was also demonstrated through several orthogonal functionalizations of the boronic ester group and amide groups. The project culminated in the enantioselective total synthesis of natural product (+)-adalinine that leveraged this newly developed methodology. In the second project, a conjunctive cross-coupling enabled ring closure was developed to synthesize tertiary alkylboronates residing on carbocyclic and heterocyclic scaffolds. A Phosphinooxazoline (Phox) ligand was identified as a non-expensive ligand that catalyzed the conjunctive cyclization reaction with high enantioselectivity. A Series of synthetically challenging enantimerically enriched spirocyclic and aryl bicyclic tertiary alkylboronates were efficiently generated using this method, and several cyclopentyl boronic esters with two continuous stereogenic centers were synthesized with high diastereoselectivity. In the third project, a Rh-catalyzed diboration reaction was successfully employed to diborate monosubstituted cyclobutenes with excellent enantioselectivity. The less sterically hindered secondary boronic ester units in the diboron products can be regioselectively functionalized using the newly developed tert-butyllithium activation-transmetallation strategy. As a result, a variety of stereochemically defined β-substituted cyclobutyl tertiary boronic esters were synthesized with high efficiency. / Thesis (PhD) — Boston College, 2024. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_109877
Date January 2024
CreatorsZhang, Xuntong
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.0024 seconds