The experiment divided into two parts. One is silicon solar cell process. The other is InGaN solar cell process. Borosilicafilm solution spin onto the n-type silicon (111) substrate and spread through the high-temperature furnace tube to form a p-n junction silicon solar cell. Then, evaporate top and rear contact by electron beam evaporation system. InGaN p-i-n structure solar cell grows on sapphire substrate by plasma-assisted molecular beam epitaxy system (PA-MBE) and its process is by repeated photolithography, inductive coupled plasma etching and wet etching. In the device fabrication process, the first is defining the sample size(mesa). Second, etched to the n-type GaN layer, and then coated metal as electrode. Finally, we get the device.
In the measurement, the measurement of I-V curve of samples in the light by solar simulator of AM1.5 G light source observe open circuit voltage, short circuit current, fill factor, and efficiency. In addition, we measure the external quantum efficiency of the samples by IPCE and observe the photoelectric conversion efficiency of samples at different wavelength. Observed the sample quality and the indium composition of InGaN layer by XRD. We observe the InGaN band gap shift by variable-temperature photoluminescence spectra.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0809111-170908 |
Date | 09 August 2011 |
Creators | Zheng, Kai-yin |
Contributors | Wang-Chuang Kuo, Shih-Wei Feng, Li-Wei Tu, Yung-Sung Chen, Ming-Chi Chou |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0809111-170908 |
Rights | user_define, Copyright information available at source archive |
Page generated in 0.0019 seconds