While there is a clear link between riparian forests and freshwater organisms, floodplain forests are seldom investigated due to difficulties in sampling structurally complex and periodically inundated habitat. This lack of research has led to large knowledge gaps that hinder our understanding of the conservation value of these unique, complex ecosystems for inland fisheries. Therefore, I aimed to determine how bottomland hardwood forests influence fish taxonomic, functional diversity and food web structure. I hypothesized that fish taxonomic and functional diversity are driven by forest complexity and the aquatic food web structure is driven by terrestrial carbon sources, specifically forest vegetation. Results indicated a higher taxonomic diversity and functional richness in the floodplain forest and that this forest type provides thermal refugia for fish assemblages. Contrary to my prediction, phytomicrobenthos were a primary carbon production source driving some or all of the aquatic food web in a complex floodplain–river system.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-6130 |
Date | 30 April 2021 |
Creators | Owens, Conner |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0022 seconds