[pt] O Método Híbrido dos Elementos de Contorno foi introduzido
em 1987. Desde então, o método foi aplicado com sucesso a
diferentes tipos de problemas de elasticidade e potencial,
inclusive problemas dependentes do tempo. Esta Tese
apresenta uma tentativa para consolidar a formulação
simplificada do Método Híbrido dos Elementos de Contorno
para a análise geral da resposta dinâmica de sistemas
elásticos. Baseado em um método de superposição modal, um
conjunto acoplado de equações diferenciais de movimento de
alta ordem é transformado em um conjunto desacoplado de
equações diferenciais de segunda ordem que podem ser
integradas normalmente por meio de procedimentos
conhecidos. Este método também é uma extensão de uma
formulação introduzida por J. S. Przemieniecki, para a
análise de vibração livre de barras e elementos de viga
baseada em uma série de freqüências. O método trata
estruturas restringidas, com condições iniciais não
homogêneas dadas como valores nodais e também através de
campos prescritos no domínio, assim como forças genéricas
de massa (além de forças inerciais). Esta tese também tem
por objetivo estabelecer a consolidação conceitual da
aplicação da versão simplificada do Método Híbrido dos
Elementos de Contorno a materiais com gradação funcional.
São obtidas várias classes de soluções fundamentais para
problemas de potencial dependentes e independentes do
tempo, para a análise no domínio da freqüência combinada
com uma técnica avançada (mencionada acima) de superposição
modal baseada em séries de freqüências. Com isso, consegue-
se a utilização de integrais somente no contorno mesmo para
materiais heterogêneos. Apresenta-se um grande número de
resultados numéricos de problemas bidimensionais, para
validação dos desenvolvimentos teóricos realizados. / [en] The hybrid boundary element method was introduced in 1987.
Since then, the method has been successfully applied to
different problems of elasticity and potential, including
time-dependent problems. This thesis presents an attempt to
consolidate a formulation for the general analysis of the
dynamic response of elastic systems. Based on a mode-
superposition technique, a set of coupled, higher-order
differential equations of motion is transformed into a set
of uncoupled second order differential equations, which may
be integrated by means of standard procedures. The first
motivation for these theoretical developments is the hybrid
boundary element method, a generalization of T. H. H.
Pian`s previous achievements for finite elements, which,
requiring only boundary integrals, yields a stiffness
matrix for arbitrary domain shapes and any number of
degrees of freedom. The method is also an extension of a
formulation introduced by J. S. Przemieniecki, for the free
vibration analysis of bar and beam elements based on a
power series of frequencies. It handles constrained and
unconstrained structures, non-homogeneous initial
conditions given as nodal values as well as prescribed
domain fields and general domain forces (other than
inertial forces). This thesis also focuses on establishing
the conceptual framework for applying the simplified
version of the hybrid boundary element method to
functionally graded materials. Several classes of
fundamental solutions for steady-state and time-dependent
problems of potential are derived for a frequency-domain
analysis combined with an advanced mode superposition
technique based on a power series of frequencies. Thus, the
boundary-only feature of the method is preserved even with
such spatially varying material property.Several numerical
examples are given in terms of an efficient patch test for
irregular bounded, unbounded and multiply connected regions
submitted to high gradients.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:4685 |
Date | 22 March 2004 |
Creators | RICARDO ALEXANDRE PASSOS CHAVES |
Contributors | NEY AUGUSTO DUMONT |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0027 seconds