Return to search

Background and Available Potential Energy in Numerical Simulations of a Boussinesq Fluid

In flows with stable density stratification, a portion of the gravitational potential energy is available for conversion to kinetic energy. The remainder is not and is called “background potential energy”. The partition of potential energy is analogous to the classical division of energy due to motion into its kinetic and internal components. Computing background and available potential energies is important for understanding stratified flows. In many numerical simulations, though, the Boussinesq approximations to the Navier-Stokes equations are employed. These approximations are not consistent with conservation of energy. In this thesis we re-derive the governing equations for a buoyancy driven fluid using Boussinesq approximations. Analytical and stochastic approaches to partitioning potential energy are developed and analyzed in simplified 1-D cases. Finally, ambient and deviatoric potential energies, quantities analogous to background and available potential energy are introduced. Direct Numerical Simulations are used to formulate an energy budget. The actual and surrogate potential energies are compared based on the simulation results.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:theses-2105
Date01 January 2013
CreatorsPanse, Shreyas S
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses 1911 - February 2014

Page generated in 0.0213 seconds