Cette thèse porte sur l'étude du comportement mécanique et l'endommagement d'un composite tressé 3D, utilisé pour fabriquer des réservoirs multiformes destinés à l'industrie automobile. L'analyse du matériau se base sur une approche expérimentale et une approche numérique. Sur le plan expérimental, des essais de caractérisation ont permis d'identifier l'ensemble des modules d'élasticité nécessaires pour établir la matrice de rigidité du matériau. De même, des essais expérimentaux ont permis d'étudier le processus d'endommagement du matériau en utilisant deux méthodes de suivie. La première consiste à utiliser une caméra munie d'un zoom pour observer les mécanismes d'endommagement qui se créent au cours du chargement. La deuxième méthode, quant à elle, utilise la technique de l'émission acoustique pour détecter en temps réel les mêmes phénomènes. Le couplage des deux méthodes a permis de dresser la chronologie de l'apparition de ces mécanismes d'endommagement. Sur le plan numérique, une analyse multiéchelle a permis d'évaluer l'influence des fissurations transversales et des décohésions d'interface sur les propriétés mécaniques du matériau. Pour cela, une cellule de base caractéristique de la microstructure a été modélisée. Par une technique d'homogénéisation appliquée à différentes échelles du matériau, les propriétés macroscopiques du composite ont été déterminées à partir de celles de ses constituants de base. Par la suite, des défauts sont introduits de manière discrète sur la même cellule de base. Par le même processus d'homogénéisation à l'échelle mésoscopique, les propriétés du matériau endommagé sont déterminées et comparées à celles du matériau non endommagé. Enfin, un pré-dimensionnement des réservoirs a été effectué en utilisant des critères de rupture classiques pour validation. / This thesis focuses of the mechanical behavior and damage of a 3D braided composite. The material analysis is based on experimental and numerical approaches. First, mechanical tests have identified all the necessary elastic moduli to determine the stiffness matrix of the material. Similarly, experimental tests were performed to study the material damage process using two investigation methods. The first consists on using a camera with a large magnifier in order to observe damage mechanisms created during loading. The second uses the acoustic emission technique to detect in real time the same phenomena. The coupling of the two methods allowed to establish the chronology of the development of these damage mechanisms. In numerical terms, a multiscale analysis approach enables to evaluate the impact of transverse cracks and debonding on the mechanical properties. Thus, a representative cell of the material microstructure is built to predict the macroscopic properties of the material from the properties of its constituents. Defects are introduced during the meshing using a program that allows duplication of nodes at the interfaceto create debonding or to create transverse cracks inside yarns. Through the same homogenization process, the damaged material properties are determined and compared to that of the undamaged material. Finally, a design of tanks are proposed by using strength criteria for their validation.
Identifer | oai:union.ndltd.org:theses.fr/2013ENMP0060 |
Date | 20 December 2013 |
Creators | Mbacke, Mamadou Abdoul |
Contributors | Paris, ENMP, Renard, Jacques, Thionnet, Alain |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds