Return to search

A COMPARISON OF TASK RELEVANT NODE IDENTIFICATION TECHNIQUES AND THEIR IMPACT ON NETWORK INFERENCES: GROUP-AGGREGATED, SUBJECT-SPECIFIC, AND VOXEL WISE APPROACHES

The dissertation discusses various node identification techniques as well as their downstream effects on network characteristics using task-activated fMRI data from two working memory paradigms: a verbal n-back task and a visual n-back task. The three node identification techniques examined within this work include: a group-aggregated approach, a subject-specific approach, and a voxel wise approach. The first chapters highlight crucial differences between group-aggregated and subject-specific methods of isolating nodes prior to undirected functional connectivity analysis. Results show that the two techniques yield significantly different network interactions and local network characteristics, despite having their network nodes restricted to the same anatomical regions. Prior to the introduction of the third technique, a chapter is dedicated to explaining the differences between a priori approaches (like the previously introduced group-aggregated and subject-specific techniques) and no a priori approaches (like the voxel wise approach). The chapter also discusses two ways to aggregate signal for node representation within a network: using the signal from a single voxel or aggregating signal across a group of neighboring voxels. Subsequently, a chapter is dedicated to introducing a novel processing pipeline which uses a data driven voxel wise approach to identify network nodes. The novel pipeline defines nodes using spatial temporal features generated by a deep learning algorithm and is validated by an analysis showing that the isolated nodes are condition and subject specific. The dissertation concludes by summarizing the main takeaways from each of the three analyses as well as highlighting the advantages and disadvantages of each of the three node identification techniques. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_44413
ContributorsFalco, Dimitri (author), Bressler, Steven L. (Thesis advisor), Florida Atlantic University (Degree grantor), Center for Complex Systems and Brain Sciences, Charles E. Schmidt College of Science
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text
Format147 p., online resource
RightsCopyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0018 seconds