Return to search

D-branes and K-homology

In this thesis the close relationship between the topological $K$-homology group of the spacetime manifold $X$ of string theory and D-branes in string theory is examined. An element of the $K$-homology group is given by an equivalence class of $K$-cycles $[M,E,\phi]$, where $M$ is a closed spin$^c$ manifold, $E$ is a complex vector bundle over $M$, and $\phi: M\rightarrow X$ is a continuous map. It is proposed that a $K$-cycle $[M,E,\phi]$ represents a D-brane configuration wrapping the subspace $\phi(M)$. As a consequence, the $K$-homology element defined by $[M,E,\phi]$ represents a class of D-brane configurations that have the same physical charge. Furthermore, the $K$-cycle representation of D-branes resembles the modern way of characterizing fundamental strings, in which the strings are represented as two-dimensional surfaces with maps into the spacetime manifold. This classification of D-branes also suggests the possibility of physically interpreting D-branes wrapping singular subspaces of spacetime, enlarging the known types of singularities that string theory can cope with. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/32039
Date03 June 2013
CreatorsJia, Bei
ContributorsMathematics, Haskell, Peter E., Floyd, William J., Linnell, Peter A., Sharpe, Eric R.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationJia_B_T_2013_R1.pdf

Page generated in 0.0019 seconds