Made available in DSpace on 2016-08-29T15:33:16Z (GMT). No. of bitstreams: 1
tese_4982_.pdf: 796586 bytes, checksum: 94cd243fe7bce4430684cdf530b0ef91 (MD5)
Previous issue date: 2011-08-30 / Este trabalho apresenta um novo preditor de séries temporais baseado em rede neural sem peso que utiliza Virtual Generalized Random Access Memory para predizer retorno futuro de ações. Esse novo preditor foi avaliado na predição de retornos futuros semanais de 46 ações de mercado de ações brasileiro. Os resultados mostram que preditores neurais sem peso podem produzir predições de retornos com os mesmo níveis de erros e propriedades de um preditor neural autoregressivo, entretando, 5.000 vezes mais rápido.
Identifer | oai:union.ndltd.org:IBICT/oai:dspace2.ufes.br:10/4249 |
Date | 30 August 2011 |
Creators | ALMEIDA, A. G. C. |
Contributors | Freitas, F. D., BADUE, Claudine, FRANCA, F. M. G., DE SOUZA, A. F. |
Publisher | Universidade Federal do Espírito Santo, Mestrado em Informática, Programa de Pós-Graduação em Informática, UFES, BR |
Source Sets | IBICT Brazilian ETDs |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | text |
Source | reponame:Repositório Institucional da UFES, instname:Universidade Federal do Espírito Santo, instacron:UFES |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds