Return to search

Computer-aided detection and classification of microcalcifications in digital breast tomosynthesis

Currently, mammography is the most common imaging technology used in breast screening. Low dose X-rays are passed through the breast to generate images called mammograms. One type of breast abnormality is a cluster of microcalcifications. Usually, in benign cases, microcalcifications result from the death of fat cells or are due to secretion by the lobules. However, in some cases, clusters of microcalcifications are indicative of early breast cancer, partly because of the secretions by cancer cells or the death of such cells. Due to the different attenuation characteristics of normal breast tissue and microcalcifications, the latter ideally appear as bright white spots and this allows detection and analysis for breast cancer classification. Microcalcification detection is one of the primary foci of screening and has led to the development of computer-aided detection (CAD) systems. However, a fundamental limitation of mammography is that it gives a 2D view of the tightly compressed 3D breast. The depths of entities within the breast are lost after this imaging process, even though the breast tissue is spread out as a result of the compression force applied to the breast. The superimposition of tissues can occlude cancers and this has led to the development of digital breast tomosynthesis (DBT). DBT is a three-dimensional imaging involving an X-ray tube moving in an arc around the breast, over a limited angular range, producing multiple images, which further undergo a reconstruction step to form a three-dimensional volume of breast. However, reconstruction remains the subject of research and small microcalcifications are "smeared" in depth by current algorithms, preventing detailed analysis of the geometry of a cluster. By using the geometry of the DBT acquisition system, we derive the "epipolar" trajectory of a microcalcification. As a first application of the epipolars, we develop a clustering algorithm after using the Hough transform to find corresponding points generated from a microcalcification. Noise points can also be isolated. In addition, we show how microcalcification projections can be detected adaptively. Epipolar analysis has also led to a novel detection algorithm for DBT using a Bayesian method, which estimates a maximum a posterior (MAP) labelling in each individual image and subsequently for all projections iteratively. Not only does this algorithm output the binary decision of whether a pixel is a microcalcification, it can predict the approximate depth of the microcalcification in the breast if it is. Based on the epipolar analysis, reconstruction of just a region of interest (ROI) e.g. microcalcification clusters is possible and it is more straightforward than any existing method using reconstruction slices. This potentially enables future classification of breast cancer when more clinical data becomes available.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:580915
Date January 2012
CreatorsHo, Pui Shan
ContributorsBrady, Michael; Schnabel, Julia
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:0d454bf3-056c-4b45-8443-b5ac2eb03065

Page generated in 0.0018 seconds