Return to search

Development of a model to predict sporulation of Bremia lactucae in lettuce

The effect of temperature and duration of leaf wetness (DLW) on sporulation of Bremia lactucae was determined for lettuce cv. Ithaca. A single spore isolate of B. lactucae was produced and was identified using lettuce differential lines each of which had known gene for resistance. Potted lettuce plants were inoculated with the isolate and incubated at 15 C, at 100% relative humidity for 24 h and then at a relative humidity lower than 70%. Seven days later, the plants were submitted to five different temperatures (5, 10, 15, 20 and 25 C) and six durations of leaf wetness (4, 6, 8, 10, 12 and 14 h). The number of spores produced was determined at the end of each wet period. After 4 h of incubation no spores were observed at any of the temperatures. Highest number of spores was found at 10 and 15 C for more than 10 h of DLW. The rate of sporulation rapidly increased between 8 and 10 h for all the temperatures, including 25 C, where the amount of spores produced was very low. The observed number of spores was transformed into proportion of maximum sporulation (PMS) by providing each data by the maximum number of spores observed for each experiment. The Richards model was used to describe sporulation as a function of leaf wetness duration and the rate and maximum value expressed as a function of temperature. This approach resulted in a three-dimensional equation that explained 87% of the variation in the PMS. Spore viability was also estimated for each temperature and DLW. It was zero after 6 h of incubation and reached almost the maximum after 10 h for all the temperatures. The sporulation model was validated under field conditions and it predicted high, medium, low, or no sporulation in 8 out of 11 times.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.23943
Date January 1995
CreatorsTchervenivanova, Eli
ContributorsKushalappa, A. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Plant Science.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001488794, proquestno: MM12279, Theses scanned by UMI/ProQuest.

Page generated in 0.0018 seconds