Life Cycle Assessment (LCA) is the globally the most recognised method for quantifying theimpact the a product or service has on the environment through its whole life-span. Theconstruction sector plays a key role in the depletion of the natural resources and the energyconsumption on the planet. Thus it is fundamental that an environmental assessment tool likeLCA should be in close cooperation with the construction process.This thesis focuses on the environmental impact of bridge abutments, and can be divided in twoparts.The rst one focuses on enhancing the automated design in the construction eld. A Python codeis created that focuses on creating the geometry of any type of bridge abutment and conductingthe calculations for the required concrete and reinforcement. The process is attempted to becomecompletely automated.The second part introduces three alternative designs for a bridge abutment that attempt to havethe same structural properties and cooperate successfully with the superstructure, while at thesame time utilize as little material as possible. The possible reduction in material is quantiedin environmental terms after an environmental impact assessment is performed.The results show that dierent designs can have a great impact on the reduction on the materialconsumption and on the impact that the whole structure has on the environment. The resultsin this study might provide the designers with valuable motivation and guidelines to achievehigher sustainability standards in the future.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-259573 |
Date | January 2019 |
Creators | Lekkas, Sotirios |
Publisher | KTH, Bro- och stÄlbyggnad |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ABE-MBT ; 19649 |
Page generated in 0.0027 seconds