The inland waterway system in the United States is fundamental to the transportation system as a whole and the success of the nation’s economy. Barge transportation in these waterways levitates congestion on the highway system and is beneficial when comparing barge transportation to other modes of freight transportation in measures of capacity, congestion, emissions, and safety. Unavoidably, the highway system intersects with the waterways, resulting in the risk of vessels collision into bridge structures. Particularly for barge impact, the literature is questioning the accuracy and oversimplification of the current design specifications.
The impact problem was investigated in this research using three-dimensional finite-element analyses. To investigate the collision of a barge into a bridge pier, a range of material models are first investigated through simulating a drop-hammer impact onto a reinforced concrete beam. A detailed model of a jumbo hopper barge is then developed, with particular detail in the bow. The barge model is examined for its response to impact into rigid piers of different size and shape. RC piers, having different shape and boundary conditions, are impacted by the barge model and assessed using selected metrics. The final part of the research examines the response of an existing bridge pier subject to an impact by a chemical transporter barge that frequently travels in the waterway.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-1176 |
Date | 18 March 2015 |
Creators | Ribbans, David A |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses |
Page generated in 0.0022 seconds