Synthetic Vision Systems (SVS) provide an aircraft pilot with a virtual 3-D image of surrounding terrain which is generated from a digital elevation model stored in an onboard database. SVS improves the pilot's situational awareness at night and in inclement weather, thus reducing the chance of accidents such as controlled flight into terrain. A terrain database integrity monitor is needed to verify the accuracy of the displayed image due to potential database and navigational system errors. Previous research has used existing aircraft sensors to compare the real terrain position with the predicted position. We propose an improvement to one of these models by leveraging the stream computing capabilities of commercial graphics hardware. "Brook for GPUs," a system for implementing stream computing applications on programmable graphics processors, is used to execute a streaming ray-casting algorithm that correctly simulates the beam characteristics of a radar altimeter during all phases of flight.
Identifer | oai:union.ndltd.org:GEORGIA/oai:digitalarchive.gsu.edu:cs_theses-1064 |
Date | 10 July 2009 |
Creators | McKeon, Sean Patrick |
Publisher | Digital Archive @ GSU |
Source Sets | Georgia State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Computer Science Theses |
Page generated in 0.0021 seconds