Return to search

On Gibbsianness of infinite-dimensional diffusions

We analyse different Gibbsian properties of interactive Brownian diffusions X indexed by the lattice $Z^{d} : X = (X_{i}(t), i ∈ Z^{d}, t ∈ [0, T], 0 < T < +∞)$. In a first part, these processes are characterized as Gibbs states on path spaces of the form $C([0, T],R)Z^{d}$. In a second part, we study the Gibbsian character on $R^{Z}^{d}$ of $v^{t}$, the law at time t of the infinite-dimensional diffusion X(t), when the initial law $v = v^{0}$ is Gibbsian.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:5263
Date January 2004
CreatorsDereudre, David, Roelly, Sylvie
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypeBook
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0049 seconds