We analyse different Gibbsian properties of interactive Brownian diffusions X indexed by the lattice $Z^{d} : X = (X_{i}(t), i ∈ Z^{d}, t ∈ [0, T], 0 < T < +∞)$. In a first part, these processes are characterized as Gibbs states on path spaces of the form $C([0, T],R)Z^{d}$. In a second part, we study the Gibbsian character on $R^{Z}^{d}$ of $v^{t}$, the law at time t of the infinite-dimensional diffusion X(t), when the initial law $v = v^{0}$ is Gibbsian.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:5263 |
Date | January 2004 |
Creators | Dereudre, David, Roelly, Sylvie |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik |
Source Sets | Potsdam University |
Language | English |
Detected Language | English |
Type | Book |
Format | application/pdf |
Rights | http://opus.kobv.de/ubp/doku/urheberrecht.php |
Page generated in 0.0049 seconds