Return to search

Zellbiologische Aspekte der Motilität von Trypanosoma brucei unter Berücksichtigung der Interaktion mit der Mikroumwelt / Cell biological aspects of motility of Trypanosoma brucei in consideration of the interaction with the microenvironment

Trypanosomen sind Protozoen, die Krankheiten bei Mensch und Tier verursachen, die unbehandelt infaust verlaufen. Die Zellen sind hoch motil, angetrieben von einem einzelständigen Flagellum, welches entlang des Zellkörpers angeheftet ist. Selbst in Zellkultur hören Trypanosomen niemals auf sich zu bewegen und eine Ablation funktioneller Bestandteile des Flagellarapparates ist letal für Blutstromformen. Es wurde gezeigt, dass Motilität notwendig ist für die Zellteilung, Organellenpositionierung und Infektiosität. Dies macht Trypanosomen zu besonders geeigneten Modellorganismen für die Untersuchung der Motilität. Dennoch ist erstaunlich wenig über die Motilität bei Trypanosomen bekannt. Dies gilt auch noch genereller für die Protozoen. Unlängst ist dieses Gebiet allerdings in den Fokus vieler Arbeiten gerückt, was bereits erstaunliche, neue Erkenntnisse hervorgebracht hat. Doch Vieles ist noch nicht abschliessend geklärt, so z.B. wie der Flagellarschlag genau reguliert wird, oder wie sich der Schlag des Flagellums entlang des Zellkörpers ausbreitet. Die vorliegende Arbeit befasst sich besonders mit den Einflüssen, die die Mikroumgebung auf die Motilität von Blutstromform-Trypanosomen ausübt. In ihrem natürlichen Lebensraum finden sich Trypanosomen in einer hoch komplexen Umgebung wieder. Dies gilt sowohl für den Blutkreislauf, als auch für den Gewebezwischenraum in ihrem Säugerwirt. Die hohe Konzentration von Zellen, Gewebeverbänden und extrazellulären Netzwerken könnte man als Ansammlung von Hindernissen für die Fortbewegung auffassen. Diese Arbeit zeigt dagegen, dass der Mechanismus der Bewegung eine Adaptation an genau diese Umweltbedingungen darstellt, so z.B. an die Viskosität von Blut. Es wird auch ein Bewegungsmodell vorgestellt, das erläutert, worin diese Adaption besteht. Dies erklärt auch, warum die Mehrheit der Zellen einer Trypanosomenkultur eine ungerichtete Taumel-Bewegung aufweist in nieder-viskosem Medium, das keine solchen “Hindernisse” enthält. Die Zugabe von Methylcellulose in einer Konzentration von ca. 0,5% (w/v) erwies sich als geeigneter Ersatz von Blut, um optimale Bedingungen für gerichtetes Schwimmen von Blutstromform Trypanosomen zu erreichen. Zusätzlich wurden in dieser Arbeit unterschiedliche Arten von Hindernissen, wie Mikroperlen (Beads) oder molekulare Netzwerke, sowie artifizielle, geordnete Mikrostrukturen verwendet, um die Interaktion mit einer festen Matrix zu untersuchen. In deren Anwesenheit war sowohl die Schwimmgeschwindigkeit, als auch der Anteil an persistent schwimmenden Trypanosomen erhöht. Zellen, die frei schwimmend in Flüssigkeiten vorkommen (wie Euglena oder Chlamydomonas), werden effizient durch einen planaren Schlag des Flagellums angetrieben. Trypanosomen hingegen mussten sich evolutionär an eine komplexe Umgebung anpassen, die mit einer zu raumgreifenden Welle interferieren würde. Der dreidimensionale Flagellarschlag des, an die Zelloberfläche angehefteten, Flagellums erlaubt den Trypanosomen eine effiziente Fortbewegung durch die Interaktion mit Objekten in jedweder Richtung gleichermassen. Trypanosomen erreichen dies durch eine hydrodynamisch verursachte Rotation ihres Zellkörpers entlang ihrer Längsachse, entgegen dem Uhrzeigersinn. Der Einfluss der Mikroumgebung wurde in früheren Untersuchungen bisher vernachlässigt, ist zum Verständnis der Motilität von T. brucei jedoch unerlässlich. Ein weiterer, bisher nicht untersuchter Aspekt der Beeinflussung der Motilität durch die Umwelt sind hydrodynamische Strömungseffekte, denen Trypanosomen im kardiovaskulären System ausgesetzt sind. Diese wurden in dieser Arbeit mittels Mikrofluidik untersucht. Um unser Verständnis der Motilität von Trypanosomen von 2D, wie üblich in der Motilitätsanalyse mittels Lebend-Zell-Mikroskopie, auf drei Dimensionen auszudehnen, wurde als bildgebendes Verfahren auch die Holographie eingesetzt. Mikrofluidik und Holographie sind beides aufkommende Techniken mit großem Anwendungspotential in der Biologie, die zuvor noch nie für die Motilitätsanalyse von Trypanosomen eingesetzt worden waren. Dies erforderte daher interdisziplinäre Kooperationen. Zusätzlich wurde in dieser Arbeit auch ein vollständig automatisiertes und Software-gesteuertes Fluoreszenzmikroskopiesystem entwickelt, das in der Lage ist, einzelne Zellen durch entsprechende Steuerung des Mikroskoptisches autonom zu verfolgen und somit eine Bewegungsanalyse in Echtzeit ermöglicht, ohne weitere Benutzerinteraktion. Letztendlich konnte dadurch auch die Bewegung der schlagenden Flagelle und des gesamten Zellkörpers mit hoher zeitlicher und räumlicher Auflösung mittels Hochgeschwindigkeits-Fluoreszenzmikroskopie aufgeklärt werden. / Trypanosomes are protozoa causing fatal diseases in livestock and man. The cells show vivid motility, driven by a single flagellum that runs along the cell body, attached to the cell surface. Even in cell culture, trypanosomes never stop moving and ablation of functional components of the flagellum is lethal for bloodstream-forms. Motility has been shown to be essential for cell division, organelle positioning and infectivity. This renders trypanosomes valuable model organisms for studying motility. But, surprisingly little is known about motility in trypanosomes, as well as in protozoa, in general. Recently, motility of trypanosomes therefore has gotten into the spotlight of interest which brought some new insights, but many essential points are still a matter of debate, for example how the flagellar beat is regulated or how it is propagated along the cell body. In this work, the effects of the micro-environment of blood-stream form trypanosomes on motility were investigated. In their natural habitat, trypanosomes find themselves in a crowded environment. This is not only the case in the blood circulatory system, but also in extra-tissue space. The high concentration of cells and extra-cellular networks might be regarded as a kind of obstacle to cellular motion. This work shows that the mode of motility of bloodstream form trypanosomes instead is adapted to the viscosity of blood. Also a mechanistic model is presented which elucidates how this adaptation works. This also explains why most trypanosomes are tumbling in low-viscous cell culture medium, lacking other cellular components. Addition of Methylcellulose at a concentration of about 0.5% (w/v) was found to be a potent substitute for blood, providing optimal conditions for trypanosome motility. Also different types of obstacles like beads and molecular networks, as well as arranged pillar microstructures were used as a tool to mimic interaction with a solid matrix. In presence of these, the swimming speed as well as the percentage of persistent swimming cells was increased. Cells inhabiting an open-ranged environment (like Euglena or Chlamydomonas) are efficiently propelled by a planar flagellar wave. Trypanosomes in contrast, had to evolutionary adapt to a crowded environment, which would infer with any extensive planar wave. The three-dimensional flagellar beat of the attached flagellum allows trypanosomes to harness any rigid matrix for effective propulsion, in all directions equally. Trypanosomes achieve this by a rotational counter-clockwise motion of their whole cell body. Another environmental aspect for trypanosome motility that had not been studied before is the influence of hydrodynamic flow, which trypanosomes are subjected to, when swimming in the blood circulatory system. For studying this, in this work, the motilty of trypanosomes was analyzed in microfluidic devices. To extend our understanding of trypanosomal motility from 2D, like in standard microscopy based live-cell imaging analysis, to 3D, a imaging technique known as holography was used, in addition. Microfluidics as well as Holography both are emerging, high-potential techniques in biology, which had not been used for the motility analysis of trypanosomes before and establishing this therefore only got possible due to interdisciplinary collaborations. In addition, a custom fully automated, software-controlled, fluorescence microscopic system was developed in this work, which is able to track and follow single cells for motility analysis in real-time without the need for user input. The motion of the flagellar beat and the cell itself was investigated at high spatio-temporal resolution using highspeed fluorescence microscopy.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:5256
Date January 2011
CreatorsHeddergott, Niko
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.003 seconds