This thesis deals with the numerical solution of cavitation bubble dynamics and with cyanobacteria gas vesicle behaviour. A program for the numerical calculation of bubble dynamics is created using the Rayleigh-Plesset equation and its modifications. Subsequently, bubbles of different sizes are investigated during acoustic cavitation with various driving frequencies. Furthermore, a model for hydrodynamic cavitation is created. The model combines CFD computation of flow in the Venturi nozzle with the cavitation bubble dynamics calculation. The last part of the work is dedicated to cyanobacteria gas vesicle behaviour in a variable pressure field and during passage through the Venturi nozzle.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:387731 |
Date | January 2018 |
Creators | Münster, Filip |
Contributors | Himr, Daniel, Rudolf, Pavel |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0013 seconds