Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: The thesis was initiated by a Consulting Engineering Company (KV3) as a research project
to investigate various options in which the efficiency and energy utilisation of conventional
air conditioning systems may be enhanced by using alternative and renewable energy.
Initially, eight options had been identified and through a process of determining the degree of
commercialisation the alternative options were reduced to three. These options, referred to as
the sustainable cooling alternatives, are active mass cooling, night flushing and roof cooling
system.
The roof cooling system comprised a roof-pond, roof-spray, pump and storage tank. The roof
cooling system was mathematically and experimentally modelled. The roof cooling
experiment was performed under a variety of weather conditions with the roof-pond and
storage tank temperatures continuously recorded. The experimentally recorded temperatures
were compared to the temperatures generated by the theoretical simulation calculations for
the same input and weather conditions. Good agreement was found between the
mathematical and experimental model. The largest discrepancy found between the simulated
temperature and the experimental temperature was in the order of 1 ºC.
A one-room building has been assumed to serve as a basis to which the sustainable cooling
alternatives could be applied to for theoretical simulation. The one-room building had four
façade walls and a flat roof slab. Night flushing, active mass cooling and the roof cooling
system were applied to the one-room building such that the room air temperature and space
cooling load could theoretically be simulated. The theoretical simulations were also repeated
for the case where the roof-pond and roof-spray were applied as standalone systems to the
one-room building. The theoretical simulation calculations were performed for typical
summer weather conditions of Stellenbosch, South Africa.
Under base case conditions and for a room thermostat setting of 22 ºC the peak cooling load
of the one-room building was 74.73 W/m². With the application of night flushing between the
hours of 24:00 and 07:00, the room cooling load was reduced by 5.2% by providing
3.9 W/m² of cooling and reducing the peak room temperature by 1.4 ºC. The active mass
cooling system was modelled by supplying water at a constant supply temperature of 15 ºC to
a pipe network embedded in the roof slab of the one-room building. The sea may typically be
considered as a cold water source for buildings situated at the coast. The active mass cooling
system reduced the peak cooling load of the one-room building by 50% by providing
37.2 W/m² of cooling and reducing the peak room temperature by 6.7 ºC.
When the roof-spray and roof-pond systems were applied as standalone systems to the oneroom
building, the peak cooling load of the one-room building could be reduced by 30% and
51% respectively. This is equivalent to 22.3 W/m² of peak cooling by the roof-spray and
38 W/m² of peak cooling by the roof-pond. The roof-spray reduced the peak room
temperature by 3.71 ºC while the roof-pond reduced the peak room temperature by 5.9 ºC.
Applying the roof cooling system to the one-room building produced 46 W/m² of peak
cooling which resulted in a 61.1% reduction in peak cooling load. The roof cooling system
reduced the peak temperature by 8 ºC. By comparing the sustainable cooling alternatives, the roof cooling system showed to be the most effective in reducing the one-room building peak
cooling load. Over a 24 hour period the roof cooling system reduced the net heat entry to the
one-room building by 57.3%.
In a further attempt to reduce the peak cooling load, the sustainable cooling alternatives were
applied in combinations to the one-room building. The combination of night flushing and
roof-spray reduced the peak cooling load by 36% while a combination of night flushing and
active mass cooling reduced the peak cooling load by 55%. Combining night flushing with
the roof-pond also yielded a 55% peak cooling load reduction. The combination of roofpond,
active mass cooling and night flushing provided 51 W/m² of cooling which
corresponded to a 68% reduction in peak cooling load. Utilising the sustainable cooling
alternatives in a combination in the one-room building gave improved results when compared
to the case where the sustainable cooling alternatives were employed as standalone systems.
It is illustrated by means of a sensitivity analysis that the ability of the roof cooling system to
produce cool water is largely influenced by ambient conditions, droplet diameter and roofspray
rate. Under clear sky conditions, an ambient temperature of 15 ºC, relative humidity of
80%, a roof-spray rate of 0.02 kg/sm² and a roof-pond water level of 100mm, water could be
cooled at a rate of 113 W/m². The roof-spray energy contributed to 28 W/m² whilst the night
sky radiation was responsible for 85 W/m² of the water cooling. It must however be noted
that the water of the roof cooling system can never be reduced to a temperature that is lower
than the ambient dew point temperature. / AFRIKAANSE OPSOMMING: Die tesis is geïnisieer deur ‘n Raadgewende Ingenieurs Maatskappy (KV3) as a
navorsingsprojek om verskeie opsies te ondersoek waarmee die effektiwiteit en energie
verbruik van konvensionele lugversorgingstelsels verbeter kan word deur middel van
alternatiewe en hernubare energie. Agt opsies is oorspronglik geïdentifiseer en deur middel
van ‘n proses waarby die graad van kommersialisering van hierdie alternatiewe maniere
bepaal is, kon die opsies verminder word tot drie. Hierdie opsies, ook verwys na as die
volhoubare verkoelingsalternatiewe, sluit in aktiewe massa verkoeling, dakverkoeling en
nagventilasie.
Die dakverkoelingstelsel bestaan uit dakwater, ‘n dakspuit, ‘n pomp en ‘n stoortenk. Die
dakverkoelingstelsel is wiskundig en eksperimenteel gemodelleer. Die dakverkoelingseksperiment
is uitgevoer onder ‘n verskeidenheid van weersomstandighede. Die dakwater
asook die stoortenk se water temperatuur is voortdurend aangeteken. Dieselfde weer- en
insetkondisies is gebruik vir die simulasie berekening en die temperature van die stoortenk se
water en die dakwater is vergelyk met die temperatuurlesings van die eksperimentele werk.
Die temperature van die eksperimentele lesings het goed vergelyk met die temperatuur
simulasie berekeninge. Die grootste verskil tussen die simulasie en eksperimentele
temperatuur was in die orde grootte van 1 ºC.
‘n Een-kamer gebou is aangeneem om as basis te dien waarop die volhoubare
verkoelingsalternatiewe aangewend kon word vir teoretiese simulasie. Die een-kamer gebou
het uit vier buite mure en ‘n horisontale beton dak bestaan. Nag ventilasie, aktiewe massa
verkoeling en die dakverkoelingstelsel is toegepas op die een-kamer gebou en die kamer se
verkoelingslas asook die kamer se lugtempertuur is teoreties gesimuleer. Die teoretiese
simulasies is ook herhaal vir die geval waar die dakwater and dakspuitstelsel apart
aangewend is op die een-kamer gebou. Die teoretiese simulasie berekeninge is uitgevoer vir
tipiese somer weersomstandighede vir Stellenbosch, Suid Afrika.
Onder basisgeval omstandighede, waar die een-kamer gebou gesimuleer is, sonder enige
volhoubare verkoelingsalternatiewe en ‘n termostaat verstelling van 22 ºC, is die piek
verkoelingslas bereken as 74.73 W/m². Met die toepassing van nagventilasie tussen die ure
24:00 en 07:00 was die piekverkoelingslas van die kamer verminder met 5.2% deur 3.9 W/m²
se verkoeling te verskaf en die piekkamer temperatuur te verminder met 1.4 ºC. Aktiewe
massa verkoeling is gesimuleer deur water teen ‘n konstante temperatuur van 15 ºC te verskaf
aan ‘n pypnetwerk, geïnstalleer in the beton dak, van die een-kamer gebou. Geboue geleë aan
die kus kan tipies seewater oorweeg as ‘n bron van koue water. Aktiewe massa verkoeling
het die piekverkoelingslas van die een-kamer gebou verminder met 50% deur 37.2 W/m² se
verkoeling te verskaf en die piekkamer temperatuur te verminder met 6.7 ºC.
Wanneer die dakspuit- en dakwaterstelsel aangewend is op die een-kamer gebou as enkel
staande stelsels, is die piekverkoelingslas verminder met 30% en 51% onderskeidelik. Dit is
ekwivalent aan 22.3 W/m² se verkoeling vir die dakspuitstelsel en 38 W/m² se verkoeling vir
die dakwaterstelsel. Die dakspuitstelsel het die piekkamer temperatuur verminder met 3.71 ºC terwyl die dakwaterstelsel ‘n 5.9 ºC verlaging in piekkamer temperatuur tot gevolg
gehad het.
Die dakverkoelingstelsel het 46 W/m² se piekverkoeling verskaf wat ‘n 61.1% vermindering
in piekverkoelingslas tot gevolg gehad het. Die ooreenstemmende piek temperatuur
vermindering is 8 ºC. Deur die verskeie volhoubare verkoelingsalternatiewe met mekaar te
vergelyk, word getoon dat die dakverkoelingstelsel die mees effektiefste manier is om die
een- kamer se piekverkoelingslas te verminder. Oor ‘n tydperk van 24 uur het die
dakverkoelingstelsel die totale energievloei na die een-kamer gebou met 57.3% verminder.
In ‘n verdere poging om die piekverkoelingslas te verminder, is die volhoubare
verkoelingsalternatiewe toegepas in kombinasies op die een-kamer gebou. Die kombinasie
van nagventilasie met die dakspuitstelsel het die piekverkoelingslas met 36% verminder,
terwyl ‘n kombinasie van nagventilasie en aktiewe massa verkoeling ‘n 55% vermindering in
piekverkoelingslas tot gevolg gehad het. Die kombinasie van dakwater en nagventilasie het
ook ‘n piekverkoelingslas vermindering van 55% teweeggebring. Die kombinasie van
dakwater, aktiewe massa verkoeling en nagventilasie het 51 W/m² se verkoeling veskaf, wat
ooreenstem met ‘n 68% vermindering in piekverkoelingslas. Deur die volhoubare
verkoelingsalternatiewe in kombinasies toe te pas op die een-kamer gebou, kon beter
resultate verkry word toe dit vergelyk is met die geval waar die volhoubare
verkoelingsalternatiewe as enkelstaande stelsels toegepas is.
Dit is geïllustreer deur middel van ‘n sensitiwiteitsanalise dat die vermoë van die
dakverkoelingstelsel om koue water te produseer, beïnvloed word deur buitelug kondisies,
waterdruppel deursnee en dakspuit massa vloeitempo. Onder die oop hemelruimteomstandighede,
‘n buitelug temperatuur van 15 ºC, ‘n relatiewe humiditeit van 80%, ‘n
dakspuit massa vloeitempo van 0.02 kg/sm² en dakwatervlak van 100 mm, kon water verkoel
word teen ‘n tempo van 113 W/m². Die dakspuit gedeelte het 28 W/m² bygedra terwyl die
nagruim radiasie sowat 85 W/m² se verkoeling verskaf het. Daar moet egter kennis geneem
word dat die water temperatuur van die dakverkoelingstelsel nooit verminder kan word tot
onder die buitelug doupunttemperatuur nie.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/4114 |
Date | 03 1900 |
Creators | Vorster, Jacobus Adriaan |
Contributors | Dobson, R. T., University of Stellenbosch. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering. |
Publisher | Stellenbosch : University of Stellenbosch |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | Unknown |
Type | Thesis |
Format | 1 v. (various pagings) : ill. |
Rights | University of Stellenbosch |
Page generated in 0.0037 seconds