Return to search

The Effects of Non-native and Native Anuran Tadpoles on Aquatic Ecosystem Processes

abstract: Non-native consumers can significantly alter processes at the population, community, and ecosystem level, and they are a major concern in many aquatic systems. Although the community-level effects of non-native anuran tadpoles are well understood, their ecosystem-level effects have been less studied. Here, I tested the hypothesis that natural densities of non-native bullfrog tadpoles (Lithobates catesbeianus) and native Woodhouse's toad tadpoles (Anaxyrus woodhousii) have dissimilar effects on aquatic ecosystem processes because of differences in grazing and nutrient recycling (excretion and egestion). I measured bullfrog and Woodhouse's carbon, nitrogen, and phosphorus nutrient recycling rates. Then, I determined the impact of tadpole grazing on periphyton biomass (chlorophyll a) during a 39-day mesocosm experiment. Using the same experiment, I also quantified the effect of tadpole grazing and nutrient excretion on periphyton net primary production (NPP). Lastly I measured how dissolved and particulate nutrient concentrations and respiration rates changed in the presence of the two tadpole species. Per unit biomass, I found that bullfrog and Woodhouse's tadpoles excreted nitrogen and phosphorus at similar rates, though Woodhouse's tadpoles egested more carbon, nitrogen, and phosphorus. However, bullfrogs recycled nutrients at higher N:C and N:P ratios. Tadpole excretion did not cause a detectable change in dissolved nutrient concentrations. However, the percent phosphorus in mesocosm detritus was significantly higher in both tadpole treatments, compared to a tadpole-free control. Neither tadpole species decreased periphyton biomass through grazing, although bullfrog nutrient excretion increased areal NPP. This result was due to higher biomass, not higher biomass-specific productivity. Woodhouse's tadpoles significantly decreased respiration in the mesocosm detritus, while bullfrog tadpoles had no effect. This research highlights functional differences between species by showing non-native bullfrog tadpoles and native Woodhouse's tadpoles may have different effects on arid, aquatic ecosystems. Specifically, it indicates bullfrog introductions may alter primary productivity and particulate nutrient dynamics. / Dissertation/Thesis / Masters Thesis Biology 2015

Identiferoai:union.ndltd.org:asu.edu/item:29744
Date January 2015
ContributorsGreene, Robin Suzanne (Author), Sabo, John L (Advisor), Grimm, Nancy B (Committee member), Elser, James J (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format57 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0016 seconds