Return to search

Genericity of bumpy metrics, bifurcation and stability in free boundary CMC hypersurfaces / Genericidade das métricas bumpy, bifurcação e estabilidade em hipersuperfícies de CMC e fronteira livre

In this thesis we prove the genericity of the set of metrics on a manifold with boundary M^{n+1}, such that all free boundary constant mean curvature (CMC) embeddings \\varphi: \\Sigma^n \\to M^{n+1}, being \\Sigma a manifold with boundary, are non-degenerate (Bumpy Metrics), (Theorem 2.4.1). We also give sufficient conditions to obtain a free boundary CMC deformation of a CMC inmersion (Theorems 3.2.1 and 3.2.2), and a stability criterion for this type of immersions (Theorem 3.3.3 and Corollary 3.3.5). In addition, given a one-parametric family, {\\varphi _t : \\Sigma \\to M} , of free boundary CMC immersions, we give criteria for the existence of smooth bifurcated branches of free boundary CMC immersions for the family {\\varphi_t}, via the implicit function theorem when the kernel of the Jacobi operator J is non-trivial, (Theorems 4.2.3 and 4.3.2), and we study stability and instability problems for hypersurfaces in this bifurcated branches (Theorems 5.3.1 and 5.3.3). / Nesta tese, provamos a genericidade do conjunto de métricas em uma variedade com fronteira M^{n+1}, de modo que todos os mergulhos de curvatura média constante (CMC) e fronteira livre \\varphi : \\Sigma^n \\to M^{n+1}, sendo \\Sigma uma variedade com fronteira, sejam não-degenerados (Métricas Bumpy), (Teorema 2.4.1). Nós também fornecemos condições suficientes para obter uma deformação CMC e fronteira livre de uma imersão CMC (Teoremas 3.2.1 and 3.2.2), e um critério de estabilidade para este tipo de imersões (Teorema 3.3.3 and Corolario 3.3.5). Além disso, dada uma família 1-paramétrica, {\\varphi _t : \\Sigma \\to M} , de imersões de CMC e fronteira livre, damos os critérios para a existência de ramos de bifurcação suaves de imersões CMC e fronteira livre para a familia {\\varphi_t}, por meio de o teorema da função implícita quando o kernel do operador Jacobi J é não-trivial, (Teoremas 4.2.3 and 4.3.2), e estudamos o problema da estabilidade e instabilidade para hipersuperfícies em naqueles ramos de bifurcação (Teoremas 5.3.1 and 5.3.3).

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-15022019-111803
Date03 December 2018
CreatorsCárdenas, Carlos Wilson Rodríguez
ContributorsPiccione, Paolo
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguageEnglish
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0019 seconds