A dissertation submitted to the Faculty of Science, University of Witwatersrand in the fulfillment of the requirements for the degree of Master of Science (Geology)
2017 / The LG-6 chromitite layer is the thickest (0.90 to 1.20 m thick) chromitite layer in the Lower Group chromitites of the Bushveld Complex and is of economic significance owing to the relatively high Cr-content. It can be traced across the entirety of the western limb and is mined in both the western limb and the eastern limb.
This study evaluates previously published models of chromitite formation using data from the LG-6 chromitite at Ruighoek Mine, western Bushveld Complex. Data includes petrographic studies of the reef and host rocks, whole rock analysis of the silicate host rocks and reef, and mineral chemistry for orthopyroxene, olivine and Cr-spinel using electron probe microanalysis (EPMA).
In the Ruighoek region the LG-6 chromitite comprises up to 95 vol. % chromite and is typically hosted by orthopyroxenite. Borehole data indicated an area (about 250 m2 in size) where the LG-6 is entirely hosted by harzburgite (42% orthopyroxene, 11% Cr-spinel, 14% olivine, 32% serpentine and 1% other) rather than orthopyroxenite. The whole rock and mineral chemistry revealed that the LG-6 chromitite in this area has an exceptionally high Cr/Fe ratio, up to 2.1. The whole rock data also indicated several compositional reversals in terms of MgO, Al2O3, Cr2O3, FeO, and Mg# (Mg/ [Mg+Fe2+]) for the unenriched borehole 13R-3, and compositional reversals in Cr/Fe and Cr# (Cr/ [Cr+Al]) for the enriched borehole 13R-9 upwards through the chromitite layer. The hanging wall harzburgites are characterized by an increase in Mg# for the mineral chemistry of the Cr-spinel, orthopyroxene and olivine compared to those in the footwall harzburgite. Importantly, spatial 3D modelling of borehole data at Ruighoek mine (19 drill-cores) indicates that the elevated Cr/Fe ratio in LG-6 chromitite is coincident with a depression in the topography of the chamber floor at the time of formation of the LG-6 chromitite.
These data are difficult to reconcile with existing models for chromitite formation in layered intrusions, such as the models for gravity settling, addition of a Cr-spinel crystal-laden magma, or a pressure increase. Thus, this work has developed a new model for formation of the LG-6 chromitite at Ruighoek Mine. The exceptionally high Cr/Fe ratio of LG-6 chromitite and its close association with harzburgite is attributed to multiple replenishments of the chamber by relatively primitive magmas. These are inferred to either be saturated in olivine and chromite, or chromite alone. The occurrence of relatively primitive rocks within the depression is suggested to be related to a local feeder situated within the depression. Injection of new, relatively dense magma pulses from the feeder are inferred to spread out across the chamber floor as basal flows owing to compositional stratification of the resident magma at the time of development of the LG-6 chromitite. The replenishing magmas contributed to the existing compositional stratification in the chamber, resulting in the most primitive composition within the depression of the chamber floor. Subsequent crystallisation of the most primitive magmas within the depression resulted in local development of LG-6 chromitite with exceptionally high Cr/Fe ratios together with the enclosing harzburgitic rocks. The thickness of the LG-6 chromitite is attributed to continuous replenishment by large volumes of new, chromite-saturated, magmas via the feeder channel located in the depression. This study suggests that magma stratification and the replenishment of the chamber by chromite-saturated magmas played an important role in the development of the chromitite layers of the Bushveld Complex. / MT 2018
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:wits/oai:wiredspace.wits.ac.za:10539/24026 |
Date | January 2017 |
Creators | McIntosh, Ryan |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Format | Online resource (xiii, 139 leaves), application/pdf |
Page generated in 0.0018 seconds