Return to search

Experimental evidence for sulphide magma percolation and evolution : relevant to the chromite bearing reefs of the Bushveld Complex

Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Pt mineralization within the Bushveld Complex is strikingly focused on the chromitite reefs, despite these horizons being associated with low volumes of base metal sulphide relative to Pt grade. Partitioning of Pt (Dsil/sulp) from silicate magma into immiscible sulphide liquid appears unable to explain Pt concentrations in chromitite horizons, due to the mismatch that exists between very large R factor required and the relevant silicate rock volume. Consequently, in this experimental study we attempt to gain better insight into possible Pt grade enhancement processes that may occur with the Bushveld Complex (BC) sulphide magma. We investigate the wetting properties of sulphide melt relevant to chromite and silicate minerals, as this is a key parameter controlling sulphide liquid percolation through the cumulate pile. Additionally, we have investigated how fractionation of the sulphide liquid from mono-sulphide-solid-solution (Mss) crystals formed within the overlying melanorite might affect sulphide composition and Pt grades within the evolved sulphide melt. Two sets of experiments were conducted: Firstly, at 1 atm to investigate the phase relations between 900OC and 1150OC, within Pt-bearing sulphide magma relevant to the BC; Secondly, at 4 kbar, between 900OC to 1050OC, which investigated the downwards percolation of sulphide magma through several layers of silicate (melanorite) and chromitite. In addition, 1atm experiments were conducted within a chromite dominated chromite-sulphide mixture to test if interaction with chromite affects the sulphide system by ether adding or removing Fe2+. Primary observations are as follows: We found sulphide liquid to be extremely mobile, the median dihedral angles between sulphide melt and the minerals of chromitite and silicate layers are 11O and 33O respectively. This is far below the percolation threshold of 60O for natural geological systems. In silicate layers sulphide liquid forms vertical melt networks promoting percolation. In contrast, the extremely effective wetting of sulphide liquid in chromitites restricts sulphide percolation. Inter-granular capillary forces increase melt retention, thus chromitites serve as a reservoir for sulphide melt. Sulphide liquid preferentially leaches Fe2+ from chromite, increasing the Fe concentration of the sulphide liquid. The reacted chromite rims are enriched in spinel end-member. This addition of Fe2+ to the sulphide magma prompts crystallization Fe-rich Mss, decreasing the S-content of sulphide melt. This lowers Pt solubility and leads to the formation of Pt alloys within the chromitite layer. Eventually, Cu-rich sulphide melt escapes through the bottom of the chromitite layer. These observations appear directly applicable to the mineralized chromitite reefs of the Bushveld complex. We propose that sulphide magma, potentially injected from the mantle with new silicate magma injections, percolated through the silicate cumulate overlying the chromitite and crystallized a significant volume of Fe-Mss. Chromitite layers functioned as traps for percolating, evolved, Cu-, Ni- and Pt-rich sulphide liquids. This is supported by the common phenomenon that chromitites contain higher percentages of Ni, Cu and Pt relative to hanging wall silicate layers. When in contact with chromite, sulphide melt is forced to crystallize Mss as it leaches Fe2+ from the chromite, thereby further lowering the S-content of the melt. This results in precipitation, as Pt alloys, of a large proportion of the Pt dissolved in the sulphide melt. In combination, these processes explain why chromitite reefs in the Bushveld Complex have Pt/S ratios are up to an order of magnitude higher that adjacent melanorite layers. / AFRIKAANSE OPSOMMING: Pt mineralisasie in die Bosveld Kompleks is kenmerkend gefokus op die chromatiet riwwe, alhoewel die riwwe geassosieer is met lae volumes basismetaal sulfiedes relatief tot Pt graad. Verdeling van Pt (Dsil/sulp) vanaf silikaat magma in onmengbare sulfiedvloeistof is klaarblyklik onvoldoende om Pt konsentrasies in chromatiet lae te verduidelik, a.g.v. die wanverhouding wat bestaan tussen ‘n baie groot R-faktor wat benodig word en die relatiewe silikaat rots volumes. Gevolglik, in die eksperimentele studie probeer ons beter insig kry oor moontlike Pt graad verhogingsprosesse wat plaasvind in die BK sulfied magma. Ons ondersoek die benattingseienskappe van sulfied vloeistof relevant tot chromiet- en silikaat minerale, omdat dit die sleutel maatstaf is vir die beheer van sulfied vloeistof deursypeling deur die kumulaat opeenhoping. Addisioneel het ons ook ondersoek hoe die fraksionering van sulfied vloeistof vanaf MSS kristalle, gevorm binne die hangende melanoriet muur, moontlik die sulfied samestelling en Pt graad binne ontwikkelde sulfied smelt kan beïnvloed. Twee stelle van eksperimente is gedoen: Eerstens, by 1 atm om ondersoek in te stel oor fase verwantskappe tussen 900OC en 1150OC, binne ‘n Pt-verrykte sulfied magma samestelling relevant tot die BK; Tweedens, by 4 kbar, tussen 900OC tot 1050OC, wat die afwaartse deursypeling van sulfied magma deur veelvuldige lae van silikaat minerale en chromatiet. Addisionele 1 atm eksperimente is gedoen binne ‘n chromiet gedomineerde chromiet-sulfied mengsel, om te toets of interaksie met chromiet die sulfied sisteem affekteer deur Fe2+ te verwyder of by te dra. Primêre observasies is soos volg: Ons het bevind sulfiedsmelt is uiters mobiel, die mediaan dihedrale hoek tussen sulfiedsmelt en minerale van chromiet en silikaat lae is 11O en 33O onderskydelik. Dit is ver onder die deursypelings drumpel van 60O vir natuurlike geologiese stelsels. In silikaatlae vorm die sulfiedsmelt vertikale netwerke wat deursypeling bevorder. Inteendeel, uiters effektiewe benatting van sulfiedsmelt binne chromatiete vertraag sulfied deusypeling. Tussen kristal kapilêre kragte verhoog smelt retensie, dus dien chromatiete as ‘n opgaarmedium vir sulfiedsmelt. S oorversadigte sulfied vloeistof loogsif Fe2+ vanuit chromiet en veroorsaak ‘n verhoging in Fe-konsentraie. Die gereageerde chromiet buiterante is daarvolgens verryk in Cr-spinêl eind-ledemaat. Die addisionele byvoeging van Fe2+ aan sulfied magma veroorsaak die kristalisasie van Fe-ryke Mss en verlaag dus die S-konsentrasie van die sulfied smelt. Dit verlaag Pt oplosbaarheid en lei tot die formasie van Py allooie binne-in chromatiete. Ten einde, ontsnap Cu-ryke sulfied smelt deur die onderkant van die chromatiet lae. Die observasies is direk van toepassing op die gemineraliseerde chromatiet riwwe van die Bosveld Kompleks. Ons stel voor dat sulfied magma, potensiaal ingespuit vanuit die mantel saam nuwe inspuitings van silikaat magma, deur die hangende silikaat kumulaat bo chromatiet lae deurgesypel het en ‘n betekenisvolle volume Fe-Mss gekristalliseer het. Chromatiet lae het gefunksioneer as lokvalle vir afwaartsbewegende, ontwikkelde, Cu-, Ni-, en Pt-ryke sulfied vloeistowwe. Dit word ondersteun deur die algemene verskynsel dat chromatiete hoër persentasies van Ni, Cu en Pt relatief teenoor die hangende muur silikaat lae het. Wanneer sulfied smelt in kontak is met chromiet, word dit geforseer om Mss te kristalliseer soos Fe2+ geloogsif word, waarvolgens die smelt se S konsentrasie verder verlaag word. Dit veroorsaak die presipitasie, as Pt allooie, van groot proporsies opgeloste Pt vanuit sulfied smelt. Deur die prosesse te kombineer, kan dit moontlik verduidelik word hoekom chromatiet riwwe in die Bosveld Kompleks Pt/S verhoudings veel hoër is as aanrakende melanoriet lae.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/20043
Date03 1900
CreatorsKoegelenberg, Corne
ContributorsStevens, Gary, Stellenbosch University. Faculty of Science. Dept. of Earth Sciences.
PublisherStellenbosch : Stellenbosch University
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageUnknown
TypeThesis
Format57 p. : ill.
RightsStellenbosch University

Page generated in 0.0033 seconds