Tato práce si klade za cíl vyhodnotit techniky získávání znalostí pro využití v prostředí malého podnikání. Po prozkoumání dat a konzultace s doménovymi experty byly vybrány dvě úlohy: analyza nákupního košíku a predikce prodejů. Pro analyzu nákupního košíku byl využit algoritmus Relim pro vyhledávání častych itemsetů a metriky určující zajímavost asociačních pravidel. Pro úlohu predikce prodejů byl implementován dekompoziční model, SARIMA, MARS a neuronové sítě s časovym oknem. Modely byly vyhodnoceny. Pomocí optimalizace hyper-parametrů bylo dosaženo přijatelnych vysledků. Oproti předpokladům nedošlo při dodání dat o počasí a využití nelineárních modelů ke zlepšení oproti SARIMA. Predikce byla implementována jako služba na straně serveru pro testování v produkčním prostředí.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:385997 |
Date | January 2018 |
Creators | Sabovčik, František |
Contributors | Burgetová, Ivana, Zendulka, Jaroslav |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | English |
Detected Language | Unknown |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0016 seconds