Return to search

Short-chain fatty acid modulation of apoptosis in gastric and colon cancer cells.

Introduction: Gastric and colon cancer are major causes of mortality and morbidity worldwide. Gastric cancer is often detected at an advanced stage and current chemotherapeutics are only modestly effective against this neoplasm. Novel chemotherapeutics, chemopreventive agents and treatment strategies are required to prevent and treat gastric cancer. The ideal method to eliminate cancer cells may be the induction of apoptosis, further preventing cell proliferation and tumour growth. Recently, short-chain fatty acids (SCFAs) butyrate and propionate have been investigated as potential chemotherapeutic agents, particularly in colon cancer. Butyrate is reported to induce apoptosis in colon cancer cells and is demonstrated to modulate intracellular redox state by altering the levels of an antioxidant, glutathione (GSH). GSH availability is controlled by the oxidative pentose pathway (OPP). Very few studies have investigated the effects of butyrate on cell types other than colon cancer cells, and even less is known regarding the effects of propionate. This thesis investigated the potential for SCFAs to induce apoptosis in a gastric cancer cell line, Kato III, compared to the colon cancer cell line, Caco-2. Cell cycle regulation, OPP activity, GSH availability and glucose metabolism were also assessed. Methods: Initial studies developed a new technique to measure 1-13C-D-glucose metabolism. Following this, Kato III and Caco-2 colon carcinoma cells were treated with butyrate or propionate (1mM, 5mM or 10mM) or a 5mM combination of both SCFAs. The induction of apoptosis and cell cycle alterations by these SCFAs were assessed using flow cytometry. OPP activity and GSH availability were assessed in both cell lines using colorimetric techniques. Butyrate metabolism was assessed using 13C-butyrate. Results: Butyrate and propionate significantly induced apoptosis and G2-M arrest in Kato III and Caco-2 cells, although to a significantly greater extent in the latter cell line. Moreover, butyrate induced apoptosis to a significantly greater extent than propionate, in both cell lines. SCFA treatment led to the significant up-regulation of OPP activity in both cancer cell lines while GSH availability was significantly reduced. Glucose metabolism was initially increased by all SCFA treatments, however, 72hr butyrate treatment led to its reduction. Importantly, glucose metabolism was measured using a new technique developed within this thesis. The rate of butyrate metabolism was demonstrated to correlate with the sensitivity of each cell line to this SCFA. Conclusions: This thesis provides evidence that SCFAs, particularly butyrate, induce apoptosis in gastric and colon cancer cells in vitro. The response of cancer cells to SCFAs appears complex, and involves multiple distinct mechanisms and pathways, including p53, Fas, changes to intracellular redox state and glucose metabolism. The capability of butyrate to induce apoptosis also appears to be directly related to the rate of its metabolism. Butyrate has the potential to be utilised as an adjunctive therapy for the treatment of gastric cancer and colon cancer. / Thesis (Ph.D.) -- School of Molecular and Biomedical Science, 2007

Identiferoai:union.ndltd.org:ADTP/264421
Date January 2007
CreatorsMatthews, Geoffrey Mark
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish

Page generated in 0.0016 seconds