Return to search

Utvärdering av vätgaslagring för att reducera eleffektuttaget i en kommersiell byggnad med solelproduktion / Evaluation of using hydrogen storage in order to reduce grid power peaks in a commercial building with solar power production

Hydrogen can be produced by solar power driven electrolysis and then be long-termed stored until an electrical demand emerge. Therefore, hydrogen energy storage have the potential to solve the issues with seasonal energy mismatch that generally occur in buildings with solar production. The process is done without any emissions, since the input and output are electricity from renewable resources, water, oxygen and heat. In this master thesis the purpose is to evaluate how a hydrogen energy storage can be used in a commercial building in order to reduce its grid power peaks. This is investigated by creating a model which simulates a hydrogen system, combined with a battery, in a grid-connected building in Uppsala. The model dimensions the system components by using six different operation strategies. The potential of using hydrogen storage in a commercial building is evaluated with respect to its energetic and economic feasibility. The result indicates that the building’s grid power peaks can be reduced by integrating a hydrogen system, and thereby savings in terms of electricity and heat are achieved. However, the net present value is negative for all operation strategies, which means that the investment is non-profitable. By varying several factors in a sensitivity analysis, it is discovered that the investment cost must be reduced in combination with a higher monthly power fee in order to make the investment profitable. There are, however, other values that can motivate an investment in a hydrogen system. An energy storage increases the flexibility in a building and also makes the building more robust towards power outages and high electricity prices. These qualities might be more desirable in a future electrical power system with more intermittent power production.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-403618
Date January 2020
CreatorsWiding, Katarina, Sjöberg, Inga
PublisherUppsala universitet, Byggteknik och byggd miljö, Uppsala universitet, Byggteknik och byggd miljö
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC STS, 1650-8319 ; 20005

Page generated in 0.0025 seconds