The ability to gather and process information regarding the condition of forest fires is essential to cost-effective, safe, and efficient fire fighting. Advances in sensory and autopilot technology have made miniature unmanned aerial systems (UASs) an important tool in the acquisition of information. This thesis addresses some of the challenges faced when employing UASs for forest-fire perimeter surveillance; namely, perimeter tracking, cooperative perimeter surveillance, and path planning. Solutions to the first two issues are presented and a method for understanding path planning within the context of a forest-fire environment is demonstrated. Both simulation and hardware results are provided for each solution.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-1930 |
Date | 21 June 2007 |
Creators | Holt, Ryan S. |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0026 seconds