Return to search

Estrutura eletrônica de cristais : generalização mediante o cálculo fracionário /

Orientador: Alexys Bruno Alfonso / Banca: Edmundo Capelas de Oliveira / Banca: Julio Ricardo Sambrano / Banca: Denis Rafael Nacbar / Banca: Augusto Batagin Neto / Resumo: Tópicos fundamentais da estrutura eletrônica de materiais cristalinos, são investigados de forma generalizada mediante o Cálculo Fracionário. São calculadas as bandas de energia, as funções de Bloch e as funções de Wannier, para a equação de Schrödinger fracionária com derivada de Riesz. É apresentado um estudo detalhado do caráter não local desse tipo de derivada fracionária. Resolve-se a equação de Schrödinger fracionária para o modelo de Kronig-Penney e estuda-se os efeitos da ordem da derivada e da intensidade do potencial. Verificou-se que, ao passar da derivada de segunda ordem para derivadas fracionárias, o comportamento assintótico das funções de Wannier muda apreciavelmente. Elas perdem o decaimento exponencial, e exibem um decaimento acentuado em forma de potência. Fórmulas simples foram dadas para as caudas das funções de Wannier. A banda de energia mais baixa mostrou-se estar relacionada ao estado ligado de um único poço quântico. Sua função de onda também apresentou decaimento em lei de potência. As bandas de energia superiores mudam de comportamento em função da intensidade do potencial. No caso inteiro, a largura de cada uma dessas bandas diminui. No caso fracionário, diminui inicialmente e depois volta a aumentar, aproximando-se de um valor infinito à medida que a intensidade do potencial tende ao infinito. O grau de localização das funções de Wannier, expresso pelo desvio padrão da posição, mostra um comportamento similar ao da largura das bandas de energia. ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Basics topics on the electronic structure of crystalline materials are investigated in a generalized fashion through Fractional Calculus. The energy bands, the Bloch and Wannier functions for the fractional Schr odinger equation with Riesz derivative are calculated. The non-locality of the Riesz fractional derivative is analyzed. The fractional Schr odinger equation is solved for the Kronig-Penney model and the e ects of the derivative order and the potential intensity are studied. It was shown that moving from the integer to the fractional order strongly a ects the asymptotic behavior of the Wannier functions. They lose the exponential decay, gaining a strong power-law decay. Simple formulas have been given for the tails of the Wannier functions. A close relatim between the lowest energy band and the bound state of a single quantum well was found. The wavefunction of the latter decays as a power law. Higher energy bands change their behavior as the periodic potential gets stronger. In the integer case, the width of each one of those bands decreases. In the fractional case, it initially decreases and then increases. The width approaching a nite value as the strength tends to in nity. The degree of localization of the Wannier functions, as expressed by the position standard deviation, behaves similarly to the width of the energy bands. In addition to perfect crystals, Materials Science studies defective crystals. Defects are responsible for many properties of technological int... (Complete abstract click electronic access below) / Doutor

Identiferoai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000905189
Date January 2018
CreatorsGomes, Arianne Vellasco.
ContributorsUniversidade Estadual Paulista (Unesp) Faculdade de Ciências.
PublisherBauru,
Source SetsUniversidade Estadual Paulista
LanguagePortuguese, Portuguese, Texto em português; resumo em português e inglês
Detected LanguageEnglish
Typetext
Format152 f.
RelationSistema requerido: Adobe Acrobat Reader

Page generated in 0.0138 seconds